113 research outputs found

    Marine ice regulates the future stability of a large Antarctic ice shelf

    Get PDF

    TermPicks: a century of Greenland glacier terminus data for use in scientific and machine learning applications

    Get PDF
    Marine-terminating outlet glacier terminus traces, mapped from satellite and aerial imagery, have been used extensively in understanding how outlet glaciers adjust to climate change variability over a range of timescales. Numerous studies have digitized termini manually, but this process is labor intensive, and no consistent approach exists. A lack of coordination leads to duplication of efforts, particularly for Greenland, which is a major scientific research focus. At the same time, machine learning techniques are rapidly making progress in their ability to automate accurate extraction of glacier termini, with promising developments across a number of optical and synthetic aperture radar (SAR) satellite sensors. These techniques rely on high-quality, manually digitized terminus traces to be used as training data for robust automatic traces. Here we present a database of manually digitized terminus traces for machine learning and scientific applications. These data have been collected, cleaned, assigned with appropriate metadata including image scenes, and compiled so they can be easily accessed by scientists. The TermPicks data set includes 39 060 individual terminus traces for 278 glaciers with a mean of 136 ± 190 and median of 93 of traces per glacier. Across all glaciers, 32 567 dates have been digitized, of which 4467 have traces from more than one author, and there is a duplication rate of 17 %. We find a median error of ∼ 100 m among manually traced termini. Most traces are obtained after 1999, when Landsat 7 was launched. We also provide an overview of an updated version of the Google Earth Engine Digitization Tool (GEEDiT), which has been developed specifically for future manual picking of the Greenland Ice Sheet

    Seasonal dynamic thinning at Helheim Glacier

    Get PDF
    AbstractWe investigate three annual mass-balance cycles on Helheim Glacier in south-east Greenland using TanDEM-X interferometric digital elevation models (DEMs), bedrock GPS measurements, and ice velocity from feature-tracking. The DEMs exhibit seasonal surface elevation cycles at elevations up to 800 m.a.s.l. with amplitudes of up to 19 m, from a maximum in July to a minimum in October or November, concentrated on the fast-flowing areas of the glacier indicating that the elevation changes have a mostly dynamic origin. By modelling the detrended bedrock loading/unloading signal we estimate a mean density for the loss of 671±70 kgm−3 and calculate that total water equivalent volume loss from the active part of the glacier (surface flow speeds >1 m day−1) ranges from 0.5 km3 in 2011 to 1.6 km3 in 2013. A rough ice-flux divergence analysis shows that at lower elevations (<200 m) mass loss by dynamic thinning fully explains seasonal elevation changes. In addition, surface elevations decrease by a greater amount than field observations of surface ablation or surface-energy-balance modelling predict, emphasising the dynamic nature of the mass loss. We conclude, on the basis of ice-front position observations through the time series, that melt-induced acceleration is most likely the main driver of the seasonal dynamic thinning, as opposed to changes triggered by retreat

    Brief communication: Thwaites Glacier cavity evolution

    Get PDF
    Between 2014 and 2017, ocean melt eroded a large cavity beneath and along the western margin of the fast-flowing core of Thwaites Glacier. Here we show that from2017 to the end of 2020 the cavity persisted but did not ex-pand. This behaviour, of melt concentrated at the groundingline within confined sub-shelf cavities, fits with prior observations and modelling studies. We also show that acceleration and thinning of Thwaites Glacier grounded ice continued, with an increase in speed of 400 m a−1and a thinning rate of at least 1.5 m a−1, between 2012 and 2020

    Stagnation and mass loss on a Himalayan debris-covered glacier: processes, patterns and rates

    Get PDF
    This research was supported financially by the University Centre in Svalbard (UNIS), National Geographic Society GRANT #W135-10, The Natural Environmental Research Council and the European Commission FP7-MC-IEF.The ablation areas of debris-covered glaciers typically consist of a complex mosaic of surface features with contrasting processes and rates of mass loss. This greatly complicates glacier response to climate change, and increases the uncertainty of predictive models. In this paper we present a series of high-resolution DEMs and repeat lake bathymetric surveys on Ngozumpa Glacier, Nepal, to study processes and patterns of mass loss on a Himalayan debris-covered glacier in unprecedented detail. Most mass loss occurs by melt below supraglacial debris, and melt and calving of ice cliffs (backwasting). Although ice cliffs cover only ∼5% of the area of the lower tongue, they account for 40% of the ablation. The surface debris layer is subject to frequent re-distribution by slope processes, resulting in large spatial and temporal differences in debris-layer thickness, enhancing or inhibiting local ablation rates and encouraging continuous topographic inversion. A moraine-dammed lake on the lower glacier tongue (Spillway Lake) underwent a period of rapid expansion from 2001 to 2009, but later experienced a reduction of area and volume as a result of lake level lowering and sediment redistribution. Rapid lake growth will likely resume in the near future, and may eventually become up to 7 km long.Publisher PDFPeer reviewe
    • …
    corecore