398 research outputs found

    Multicycle dynamics of fault systems and static and dynamic triggering of earthquakes

    Get PDF
    Dynamic simulations of rupture propagation and multiple earthquake cycles for varying fault geometries are presented. We investigate the role of both dynamic and static stress changes on earthquake triggering. Dynamic stress triggering of earthquakes is caused by the passage of seismic waves, whereas static stress triggering is due to net slippage on a fault resulting from an earthquake. Static stress changes represented by a Coulomb failure function and its relationship to seismicity rate change is a relatively well-known mechanism, whereas the physical origin of dynamic triggering remains one of the least understood aspects of earthquake nucleation. We investigate these mechanisms by analysing seismicity patterns with varying fault separation, geometry and with and without dynamic triggering present

    Galaxy Counterparts of metal-rich Damped Lyman-alpha Absorbers - I: The case of the z=2.35 DLA towards Q2222-0946

    Full text link
    We have initiated a survey using the newly commissioned X-shooter spectrograph to target candidate relatively metal-rich damped Lyman-alpha absorbers (DLAs). The spectral coverage of X-shooter allows us to search for not only Lyman-alpha emission, but also rest-frame optical emission lines. We have chosen DLAs where the strongest rest-frame optical lines ([OII], [OIII], Hbeta and Halpha) fall in the NIR atmospheric transmission bands. In this first paper resulting from the survey, we report on the discovery of the galaxy counterpart of the z_abs = 2.354 DLA towards the z=2.926 quasar Q2222$-0946. This DLA is amongst the most metal-rich z>2 DLAs studied so far at comparable redshifts and there is evidence for substantial depletion of refractory elements onto dust grains. We measure metallicities from ZnII, SiII, NiII, MnII and FeII of -0.46+/-0.07, -0.51+/-0.06, -0.85+/-0.06, -1.23+/-0.06, and -0.99+/-0.06, respectively. The galaxy is detected in the Lyman-alpha, [OIII] lambda4959,5007 Halpha emission lines at an impact parameter of about 0.8 arcsec (6 kpc at z_abs = 2.354). We infer a star-formation rate of 10 M_sun yr^-1, which is a lower limit due to the possibility of slit-loss. Compared to the recently determined Halpha luminosity function for z=2.2 galaxies the DLA-galaxy counterpart has a luminosity of L~0.1L^*_Halpha. The emission-line ratios are 4.0 (Lyalpha/Halpha) and 1.2 ([OIII]/Halpha). The Lyalpha line shows clear evidence for resonant scattering effects, namely an asymmetric, redshifted (relative to the systemic redshift) component and a much weaker blueshifted component. The fact that the blueshifted component is relatively weak indicates the presence of a galactic wind. The properties of the galaxy counterpart of this DLA is consistent with the prediction that metal-rich DLAs are associated with the most luminous of the DLA-galaxy counterparts.Comment: 9 pages, 7 figures. Accepted for publication in MNRA

    Ghosts of the Milky Way: a search for topology in new quasar catalogues

    Full text link
    We revisit the possibility that we inhabit a compact multi-connected flat, or nearly-flat, Universe. Analysis of COBE data has shown that, for such a case, the size of the fundamental domain must be a substantial fraction of the horizon size. Nevertheless, there could be several copies of the Universe within the horizon. If the Milky Way was once a quasar we might detect its `ghost' images. Using new large quasar catalogues we repeat the search by Fagundes & Wichoski for antipodal quasar pairs. By applying linear theory to account for the peculiar velocity of the local group, we are able to narrow the search radius to 134 arcsec. We find seven candidate antipodal quasar pairs within this search radius. However, a similar number would be expected by chance. We argue that, even with larger quasar catalogues, and more accurate values of the cosmological parameters, it is unlikely to be possible to identify putative ghost pairs unambiguously, because of the uncertainty of the correction for peculiar motion of the Milky Way.Comment: MNRAS Letters, Accepted, 5 pages, 3 figure

    On the sizes of z>2 Damped Lyman-alpha Absorbing Galaxies

    Full text link
    Recently, the number of detected galaxy counterparts of z > 2 Damped Lyman-alpha Absorbers in QSO spectra has increased substantially so that we today have a sample of 10 detections. M{\o}ller et al. in 2004 made the prediction, based on a hint of a luminosity-metallicity relation for DLAs, that HI size should increase with increasing metallicity. In this paper we investigate the distribution of impact parameter and metallicity that would result from the correlation between galaxy size and metallicity. We compare our observations with simulated data sets given the relation of size and metallicity. The observed sample presented here supports the metallicity-size prediction: The present sample of DLA galaxies is consistent with the model distribution. Our data also show a strong relation between impact parameter and column density of HI. We furthermore compare the observations with several numerical simulations and demonstrate that the observations support a scenario where the relation between size and metallicity is driven by feedback mechanisms controlling the star-formation efficiency and outflow of enriched gas.Comment: Accepted for publishing in MNRAS lette

    Cosmic crystallography using short-lived objects - active galactic nuclei

    Full text link
    Cosmic crystallography is based on the principle that peaks in the pair separation histogram (PSH) of objects in a catalogue should be induced by the high number of topologically lensed pairs that are separated by Clifford translations, in excess to ``random'' pairs of objects. Here we present modifications of this method that successively improve the signal-to-noise ratio by removing a large part of the noise and then false signals induced by selection effects. Given the transient nature of the most readily available tracer objects, active galactic nuclei (AGNs), the former is possible because a natural filter for removing many of the noise pairs is available: when counting pairs of objects in order to create PSHs, only those with nearly identical redshifts need to be counted. This redshift filter (a maximum value of Δz/z=0.005\Delta z/z = 0.005) was applied to a compilation of AGN catalogues. Further noise was removed by applying a second filter, a maximum angle Δθ=0.075\Delta \theta =0.075 rad, and a minimum number of pairs \protect\npairs=3 to find each ``bunch of pairs'' (BoP) where the {\em vectors} (in Euclidean comoving space) defined by pairs are required to be nearly equal, whereas in the PSH only the {\em lengths} must be nearly equal. These filters reveal significant signals, which, however, are due to selection effects. A third filter, a minimum length \Lselec=150 {\hMpc} between the (parallel) vectors in a BoP, is found to effectively remove these selection effect pairs. After application of these successive filters, no significant topological signal was found.Comment: 9 pages, 8 figures, matches the version accepted by Astronomy & Astrophysic

    The use of the SAEM algorithm in MONOLIX software for estimation of population pharmacokinetic-pharmacodynamic-viral dynamics parameters of maraviroc in asymptomatic HIV subjects

    Get PDF
    Using simulated viral load data for a given maraviroc monotherapy study design, the feasibility of different algorithms to perform parameter estimation for a pharmacokinetic-pharmacodynamic-viral dynamics (PKPD-VD) model was assessed. The assessed algorithms are the first-order conditional estimation method with interaction (FOCEI) implemented in NONMEM VI and the SAEM algorithm implemented in MONOLIX version 2.4. Simulated data were also used to test if an effect compartment and/or a lag time could be distinguished to describe an observed delay in onset of viral inhibition using SAEM. The preferred model was then used to describe the observed maraviroc monotherapy plasma concentration and viral load data using SAEM. In this last step, three modelling approaches were compared; (i) sequential PKPD-VD with fixed individual Empirical Bayesian Estimates (EBE) for PK, (ii) sequential PKPD-VD with fixed population PK parameters and including concentrations, and (iii) simultaneous PKPD-VD. Using FOCEI, many convergence problems (56%) were experienced with fitting the sequential PKPD-VD model to the simulated data. For the sequential modelling approach, SAEM (with default settings) took less time to generate population and individual estimates including diagnostics than with FOCEI without diagnostics. For the given maraviroc monotherapy sampling design, it was difficult to separate the viral dynamics system delay from a pharmacokinetic distributional delay or delay due to receptor binding and subsequent cellular signalling. The preferred model included a viral load lag time without inter-individual variability. Parameter estimates from the SAEM analysis of observed data were comparable among the three modelling approaches. For the sequential methods, computation time is approximately 25% less when fixing individual EBE of PK parameters with omission of the concentration data compared with fixed population PK parameters and retention of concentration data in the PD-VD estimation step. Computation times were similar for the sequential method with fixed population PK parameters and the simultaneous PKPD-VD modelling approach. The current analysis demonstrated that the SAEM algorithm in MONOLIX is useful for fitting complex mechanistic models requiring multiple differential equations. The SAEM algorithm allowed simultaneous estimation of PKPD and viral dynamics parameters, as well as investigation of different model sub-components during the model building process. This was not possible with the FOCEI method (NONMEM version VI or below). SAEM provides a more feasible alternative to FOCEI when facing lengthy computation times and convergence problems with complex models

    The significance of the largest scale CMB fluctuations in WMAP

    Full text link
    We investigate anomalies reported in the Cosmic Microwave Background maps from the Wilkinson Microwave Anisotropy Probe (WMAP) satellite on very large angular scales and discuss possible interpretations. Three independent anomalies involve the quadrupole and octopole: 1. The cosmic quadrupole on its own is anomalous at the 1-in-20 level by being low (the cut-sky quadrupole measured by the WMAP team is more strikingly low, apparently due to a coincidence in the orientation of our Galaxy of no cosmological significance); 2. The cosmic octopole on its own is anomalous at the 1-in-20 level by being very planar; 3. The alignment between the quadrupole and octopole is anomalous at the 1-in-60 level. Although the a priori chance of all three occurring is 1 in 24000, the multitude of alternative anomalies one could have looked for dilutes the significance of such a posteriori statistics. The simplest small universe model where the universe has toroidal topology with one small dimension of order half the horizon scale, in the direction towards Virgo, could explain the three items above. However, we rule this model out using two topological tests: the S-statistic and the matched circle test.Comment: N.B. that our results do not rule out the recently proposed dodecahedron model of Luminet, Weeks, Riazuelo, Lehoucq & Uzan, which has a 36 degree twist between matched circles. 12 pages, 5 figs; more info at http://www.hep.upenn.edu/~angelica/topology.htm
    corecore