438 research outputs found

    Drag reduction in a turbulent boundary layer with sinusoidal riblets

    Get PDF
    We report on an experimental investigation on the effect of sinusoidal riblets on the near-wall characteristics of a turbulent boundary layer. The investigated riblets are characterized by a fixed wavelength and two different values of the amplitude. We comment on the flow field organization via hot wire anemometry, planar and stereoscopic particle image velocimetry experiments; furthermore, we infer on the friction drag, directly measured with a load cell, comparing the sinusoidal riblets to the reference case of riblets aligned with the mean flow (longitudinal riblets) and the Smooth case.We show that the sinusoidal riblets generally yield higher drag reduction, attaining values as large as 10%, compared with the longitudinal riblets that are limited to 8% under the same conditions. We demonstrate that the drag reduction is associated with an overall attenuation of the turbulence intensity in the buffer layer. Furthermore, we provide statistical evidence of the fact that the sinusoidal riblets are responsible for an attenuation of the Reynolds shear stresses that contribute the most to turbulence production. From the detection of the accelerated events in the buffer layer, we show that the sinusoidal riblets lead to a weakening of the intensity of the events in the streamwise plane and an enhancement of the spanwise induced motion. We relate this mechanism to that responsible for drag reduction when using spanwise wall oscillations, suggesting a possible effect of a secondary alternating vorticity in the grooves of the sinusoidal riblets

    Wall bounded flows manipulation using sinusoidal riblets

    Get PDF
    We experimentally investigate the effects of microgrooves on the development of a zero pressure gradient turbulent boundary layer. Starting from the well-known streamwise aligned riblets, we look at the effect of wavy riblets, characterized by a sinusoidal pattern in the mean flow direction. We perform hot wire experiments as well as particle image velocimetry to get some insights on the effect of the sinusoidal shape on the near wall organisation of the boundary layer. The statistical analysis clearly shows that the wavy pattern has a strong influence on the near wall structure of the boundary layer. The statistical analysis performed using the VITA technique reveals that the coherent structures that characterize the turbulent boundary layer are attenuated by the geometry manipulation. Furthermore, the POD reconstructed velocity fields, measured with PIV, reveal that the manipulation tampers with the momentum exchange occurring between the near wall and the outer region of the boundary layer, hence suggesting a modified turbulence production cycle

    A perturbative approach to the Bak-Sneppen Model

    Get PDF
    We study the Bak-Sneppen model in the probabilistic framework of the Run Time Statistics (RTS). This model has attracted a large interest for its simplicity being a prototype for the whole class of models showing Self-Organized Criticality. The dynamics is characterized by a self-organization of almost all the species fitnesses above a non-trivial threshold value, and by a lack of spatial and temporal characteristic scales. This results in {\em avalanches} of activity power law distributed. In this letter we use the RTS approach to compute the value of xcx_c, the value of the avalanche exponent τ\tau and the asymptotic distribution of minimal fitnesses.Comment: 4 pages, 3 figures, to be published on Physical Review Letter

    Dynamics of Fractures in Quenched Disordered Media

    Full text link
    We introduce a model for fractures in quenched disordered media. This model has a deterministic extremal dynamics, driven by the energy function of a network of springs (Born Hamiltonian). The breakdown is the result of the cooperation between the external field and the quenched disorder. This model can be considered as describing the low temperature limit for crack propagation in solids. To describe the memory effects in this dynamics, and then to study the resistance properties of the system we realized some numerical simulations of the model. The model exhibits interesting geometric and dynamical properties, with a strong reduction of the fractal dimension of the clusters and of their backbone, with respect to the case in which thermal fluctuations dominate. This result can be explained by a recently introduced theoretical tool as a screening enhancement due to memory effects induced by the quenched disorder.Comment: 7 pages, 9 Postscript figures, uses revtex psfig.sty, to be published on Phys. Rev.

    Generalized Dielectric Breakdown Model

    Full text link
    We propose a generalized version of the Dielectric Breakdown Model (DBM) for generic breakdown processes. It interpolates between the standard DBM and its analog with quenched disorder, as a temperature like parameter is varied. The physics of other well known fractal growth phenomena as Invasion Percolation and the Eden model are also recovered for some particular parameter values. The competition between different growing mechanisms leads to new non-trivial effects and allows us to better describe real growth phenomena. Detailed numerical and theoretical analysis are performed to study the interplay between the elementary mechanisms. In particular, we observe a continuously changing fractal dimension as temperature is varied, and report an evidence of a novel phase transition at zero temperature in absence of an external driving field; the temperature acts as a relevant parameter for the ``self-organized'' invasion percolation fixed point. This permits us to obtain new insight into the connections between self-organization and standard phase transitions.Comment: Submitted to PR

    Invasion Percolation with Temperature and the Nature of SOC in Real Systems

    Full text link
    We show that the introduction of thermal noise in Invasion Percolation (IP) brings the system outside the critical point. This result suggests a possible definition of SOC systems as ordinary critical systems where the critical point correspond to set to 0 one of the parameters. We recover both IP and EDEN model, for T0T \to 0, and TT \to \infty respectively. For small TT we find a dynamical second order transition with correlation length diverging when T0T \to 0.Comment: 4 pages, 2 figure

    Aeroelastic-structural coupling in antenna prototype for windy open-space

    Get PDF
    The interaction between wind and an antenna prototype for the low-frequency radio telescope of the Square Kilometer Array (SKA) is experimentally tested in the wind tunnel of the Politecnico di Torino. The tests aim to predict the antenna behaviour during working conditions, i.e. mounted by means of five contact points to a metal grid on sandy ground in the Australian desert. The wind tunnel is characterised by a circular test section having a diameter equal to 3 m and a length equal to 5 m. The height and the distance between the lateral legs of the antenna are equal respectively to 2.2 m and 1.5 m. The tests were performed at increasing wind speed up to 110 km/h. The system under analysis is an aluminium antenna composed by four parts arranged in axial symmetry and each one made of fifteen rods and small plates/wire elements. A numerical parametric model of the system is developed to numerically study the dynamic behaviour of the antenna in the frequency range of interest. The model is able to handle very high modal density and closed spaced modes in multiplicity of four because of the symmetric structure as well as the different shapes of the elements forming the antenna. The wind tunnel results emphasise the fluid-structure coupling of aerodynamics modes and the critical aspects of the boundary conditions for a good prediction of the oscillations amplitudes

    Phase separation in systems with absorbing states

    Full text link
    We study the problem of phase separation in systems with a positive definite order parameter, and in particular, in systems with absorbing states. Owing to the presence of a single minimum in the free energy driving the relaxation kinetics, there are some basic properties differing from standard phase separation. We study analytically and numerically this class of systems; in particular we determine the phase diagram, the growth laws in one and two dimensions and the presence of scale invariance. Some applications are also discussed.Comment: Submitted to Europhysics Let

    Growing Cayley trees described by Fermi distribution

    Full text link
    We introduce a model for growing Cayley trees with thermal noise. The evolution of these hierarchical networks reduces to the Eden model and the Invasion Percolation model in the limit T0T\to 0, TT\to \infty respectively. We show that the distribution of the bond strengths (energies) is described by the Fermi statistics. We discuss the relation of the present results with the scale-free networks described by Bose statistics

    Statistical properties of fractures in damaged materials

    Full text link
    We introduce a model for the dynamics of mud cracking in the limit of of extremely thin layers. In this model the growth of fracture proceeds by selecting the part of the material with the smallest (quenched) breaking threshold. In addition, weakening affects the area of the sample neighbour to the crack. Due to the simplicity of the model, it is possible to derive some analytical results. In particular, we find that the total time to break down the sample grows with the dimension L of the lattice as L^2 even though the percolating cluster has a non trivial fractal dimension. Furthermore, we obtain a formula for the mean weakening with time of the whole sample.Comment: 5 pages, 4 figures, to be published in Europhysics Letter
    corecore