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Abstract of Thesis 

Background 

Magnetic Resonance Myocardial Perfusion Imaging (MRMPI) has been used for the 

detection of reversible myocardial ischaemia in humans since the early 1990’s. This 

non-invasive method of diagnosing reversible myocardial ischaemia has a number of 

advantages over the other more commonly used non-invasive tests such as ETT, stress 

echocardiography and radionuclide single photon emission computerised tomography 

(SPECT). There is no need to perform physical exercise, no image orientation 

constraints, excellent spatial and temporal resolution, no photon scatter or attenuation 

artefacts and no exposure to ionising radiation. The use of MRMPI for the detection of 

reversible myocardial ischaemia has been extensively investigated in the past using 

other non-invasive tests as the gold standard namely PET and SPECT. Invasive 

comparisons have been made with visual coronary angiography and quantitative 

coronary angiography (QCA). This previous work has been summarised in a meta-

analysis which estimated the sensitivity and specificity to be 84% and 85% 

respectively.(1) The majority of previous studies have used QCA or visual estimation of 

stenosis severity to determine the diameter of stenosis (DS). This however has been 

shown to correlate poorly with the functional significance of disease within a coronary 

artery.(2;3) Prior to the commencement of this study no comparison had been made 

with the invasive gold standard of FFR. This is measured using a coronary pressure wire 

at the time of coronary angiography and is regarded by many cardiologists to be the 

current invasive gold standard for determining if coronary artery disease (CAD) is 

physiologically significant. We therefore undertook the present study to determine the 

true accuracy of MRMPI for the diagnosis of physiologically significant CAD. We also 

assessed the ability of MRMPI to detect isolated microcirculatory disease as determined 

by thermodilution derived CFR. Our other aims included an analysis of troponin release 
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following PCI and its relation to QCA, pressure wire data and the occurrence of new 

late gadolinium enhancement (LGE). New LGE post CABG was also quantified and 

compared with that encountered post-PCI. 

 

Methods 

One hundred and three patients with chest pain were referred for coronary angiography 

and underwent MRMPI in the week prior to the angiogram. This was performed on a 

Siemens Sonata 1.5Tesla scanner (Erlangen, Germany). Scanning commenced with 

localisers and cine long and short axis scans (TrueFISP sequence) to provide left 

ventricular mass, volume and ejection fraction data. This was followed by perfusion 

imaging of 3 short axis slices using a turboFLASH sequence (TI 90ms, TE 0.99ms, TR 

173ms, Flip Angle 8o, Matrix 80 x 128). Thereafter long and short axis slices were 

acquired for the detection of LGE (turboFLASH). Maximal hyperaemia was achieved 

using intravenous adenosine (140µg/kg/min). The first pass bolus contained 

0.1mmol/kg of gadolinium (Omniscan, Amersham Health, Oslo, Norway) power 

injected at 5ml/sec (Medrad, Pittsburgh, PA) followed by a 20ml saline bolus. Twenty 

minutes after the initial bolus of gadolinium a further bolus was administered to obtain 

rest perfusion images. During coronary angiography the FFR was recorded in all patent 

major epicardial coronary arteries using a coronary pressure wire (RADI Medical 

Systems Ltd, Uppsala, Sweden) with hyperaemia induced using intravenous adenosine 

as above. An FFR value of <0.75 was taken as the cut off for the diagnosis of significant 

CAD. CFR measurements were obtained at rest and during maximal hyperaemia by 

means of thermodilution using 3ml boluses of saline. Following coronary angiography 

those patients who underwent PCI returned for a repeat MRMPI scan at 24 hours and 4 

weeks and CABG patients returned for a 4 week scan. PCI patients had a troponin I 

measurement performed at approximately 24 hours, just prior to their repeat MRMPI. 
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Qualitative MRMPI analysis, left ventricular mass, volume and ejection fraction 

analysis and QCA were all performed by two blinded independent experienced 

observers. 

 

Results 

Of the 103 enrolled patients, two were excluded from the final analysis. Seventy-six 

(74%) were male with a mean age of 60 years (SD = 9). 25 (24.8%) of 101 scans were 

normal, 40 (39.6%) had single-vessel disease, 26 (25.7%) had two-vessel disease and 10 

(9.9%) had triple-vessel disease. 121 perfusion defects were reported in 300 coronary 

territories (3 patients had complete data for only 2 coronary territories) of which 110 

had an FFR<0.75. 168 of 179 normally perfused territories were confirmed normal with 

an FFR≥0.75. The sensitivity, specificity, PPV and NPV of MRMPI for the detection of 

significant CAD were 91, 94, 91 and 94%. Cohen’s kappa was 0.97 per patient and 0.76 

per coronary territory indicating excellent and substantial agreement between observers. 

Twenty-eight coronary arteries were identified as having an FFR>0.8 and a CFR<2.0 

indicative of isolated microcirculatory disease with no physiologically significant 

epicardial disease. No coronary territories were found to have a perfusion defect on 

MRMPI suggesting that by visual analysis MRMPI is unable to detect isolated 

microvascular disease. The median post PCI troponin level was 0.57µg/L (SD=2, Range 

undetected - 13.1). The only parameters found to correlate with troponin I levels post-

PCI were increasing lesion length (r=0.6, p<0.0001) and increasing total stent length 

(r=0.37, p=0.02). We compared the increase in mass of LGE between the post-PCI 

scans and the pre-PCI scan and compared this with the troponin measurement. No 

significant correlation was found to exist between these parameters at 24 hours (r=0.25, 

p=0.07) or at 4 weeks (r=-0.19, p=0.2). The change in mass of LGE was calculated for 

the PCI and CABG patients. The mean difference in the PCI group was -0.12g 
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(Median=0, SD=0.8, Interquartile Range 0 – 0) and for the CABG group was 1.08g 

(Median=0.11, SD=2.3, Interquartile Range -0.11 – 1.38). There is a trend towards the 

development of more LGE following CABG than PCI however the difference between 

groups did not reach statistical significance (p=0.07). 

 

Conclusion 

MRMPI can accurately detect significant CHD with excellent results using FFR as the 

gold standard. Interobserver agreement is also very good even when examining 

individual coronary artery territories. Qualitative analysis of MRMPI is unable to detect 

isolated microcirculatory disease as defined by an FFR>0.8 and a CFR<2.0. Small 

troponin releases are common post-PCI and are related to the length of the lesion being 

treated and the length of stent deployed to treat the lesion. These small troponin releases 

do not accurately correlate with the occurrence of new LGE. CABG did result in a trend 

towards more new LGE compared to PCI. 
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1  Introduction 

1.1 Background 

Coronary heart disease (CHD) remains one of the leading causes of death in Europe and 

is especially prevalent in Scotland.(4) This is despite recent reductions in the incidence 

of acute MI. Between December 2005 and 2006 the incidence of patients diagnosed 

with CHD standardised by age and sex decreased by 8.4%, however remains high at 

307.5 cases per 100,000 of the population.(4) The treatment of CHD and its 

consequences consumes the largest proportion of our healthcare budget here in the UK 

compared to other European countries.(5) CHD presents most commonly as either a MI 

or angina pectoris and is due to coronary atherosclerosis. Atherosclerotic plaques 

develop in the coronary arteries over many years and are present in the arteries of the 

majority of Western adults. Once a plaque reduces the luminal diameter by greater than 

70%, blood flow to the myocardium can be reduced by such an extent to cause angina 

pectoris, depending on the site of the narrowing. Coronary artery plaques can rupture 

causing ulceration and thrombosis, which can lead to occlusion of the vessel and the 

subsequent development of a MI. Risk factors such as cigarette smoking, hypertension, 

diabetes, diet and genetics affect the progression of these atherosclerotic plaques. 

 

The routine diagnosis of coronary artery disease at this time involves a combination of 

tests including: electrocardiography (ECG); ETT; myocardial perfusion imaging using 

single photon emission computed tomography (SPECT) and a study of the coronary 

artery anatomy by coronary angiography. PET is available in a few centres in the UK 

and is regarded by many to be the current non-invasive gold standard test for the 

diagnosis of significant coronary artery disease. Stress echocardiography is being 

performed in many centres with a specialist interest in echo imaging. Multislice 
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computerised tomography imaging (MSCT) is rapidly being developed and is also being 

utilised to a certain extent by some centres in the UK. Each of these techniques has its 

limitations such as false positive and false negative results and the exposure of patients 

to ionizing radiation. In patients with chest pain and a narrowing of a coronary artery on 

angiography, evaluation and treatment can be difficult. A narrowing within a coronary 

artery can be treated by either PCI with or without a stent or by CABG. It can often be 

difficult to tell if a narrowing within a coronary artery is the cause of a patient’s 

symptoms and a considerable number of patients undergo coronary revascularisation 

without definite evidence that the coronary artery stenosis is significant. In addition to 

this, in patients with multiple narrowings, it can be difficult to tell which narrowing is 

the culprit lesion causing symptoms and requiring treatment. It is important to be sure 

that patients’ symptoms are attributable to coronary artery disease as revascularisation 

techniques are invasive and there is a mortality associated with both PCI and CABG. 

Cardiac sounding chest pain may be caused by conditions not related to the heart at all, 

such as oesophagitis, oesophageal spasm, gastro-oesophageal reflux disease and 

costochondritis. 

 

The currently employed tests for the detection of reversible myocardial ischaemia have 

a number of limitations. Exercise electrocardiography has only moderate sensitivity and 

specificity (68% and 77%).(6) Single photon emission computerised tomography 

(SPECT) has improved sensitivity of 86% and equivalent specificity of 74% but the 

radiation exposure is considerable at between 8 and 20 millisieverts depending on the 

radioisotope utilised and the images are frequently degraded by photon scatter and 

attenuation artefacts.(7). PET is widely regarded as the non-invasive gold standard but it 

is expensive, requires radioisotopes and has very limited availability in the UK. Stress 

echocardiography involves no radiation and can be utilised in conjunction with either 
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exercise or pharmacological stress. It has comparable sensitivity and specificity to 

SPECT but a proportion of patients have inadequate imaging windows.(8) Multidetector 

CT coronary angiography (CTA) is a relatively new imaging modality.(9) As with 

nuclear imaging techniques radiation exposure is not insignificant and like conventional 

coronary angiography it is not possible to confirm the functional significance of any 

stenoses identified.(2;3) 

 

Magnetic resonance myocardial perfusion imaging (MRMPI) has multiple potential 

advantages over the above techniques. It provides superior spatial resolution compared 

to nuclear perfusion imaging, which allows the delineation of both sub-endocardial and 

transmural perfusion defects. The majority of currently employed perfusion pulse 

sequences provide a spatial resolution of 2-3mm2 without any orientation constraints or 

problems with inadequate imaging windows. The currently used pulse sequences also 

provide excellent temporal resolution and 3-4 slices can usually be obtained per 

heartbeat at the heart rates achieved during pharmacological stress. During stress 

imaging, three short axis slices are obtained to cover the basal, mid and apical segments 

of the left ventricle. This protocol covers 16 of 17 segments of the AHA coronary 

arterial territory model.(10) The disadvantages of MRMPI are comapatively small 

compared to other techniques. However, scanning may not be possible in obese patients 

or patients with certain metallic implants. Claustrophobia is not infrequently 

encountered and can be particularly distressing for affected patients. 

 

MRMPI is becoming increasing available for the non-invasive detection of myocardial 

ischaemia as the number of MRI scanners increase. MRMPI was first put to clinical use 

in the 1990’s and since then a number of studies have been performed looking at its 

performance in the assessment of chest pain (Table 1.1). 
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Table 1.1 - Magnetic Resonance Myocardial Perfusion Imaging (MRMPI) Studies 1994 

– 2007. 

Author Year Patients Sensitivity Specificity Comparison 
Eichenberger 
AC(11) 1994 8 65 76 Thallium + 

QCA (>75%) 
Keijer JT(12) 2000 13 71 71 Thallium 

SPECT 
Al-Saadi N(13) 2000 54 (incl. 5 

normals) 90 83 QCA (≥75%) 

Schwitter J(14) 2001 66 (incl. 18 
volunteers) 

91 / 87 
 

94 / 85 
 

PET / QCA 
(≥50%) 

Bertshinger 
KM(15) 2001 24 (incl. 10 

volunteers) 85 81 QCA (≥50%) 

Ibrahim T(16) 2002 59 (incl. 34 
volunteers) 69 / 86 89 / 84 QCA (>75%) / 

PET 
Nagel E(17) 2003 84 88 90 QCA (≥75%) 
Ishida N(18) 2003 104 90 85 QCA (≥70%)+ 

SPECT 
Plein S(19) 2004 68 88 83 Angiography 

(≥70%) 
Paetsch I(20) 2004 79 91 62 QCA (>50%) 
Takase B(21) 2004 102 93 85 Angiography 

(>50%) 
Wolff SD(22) 2004 75 93 ± 0 75 ± 7% QCA (≥70%) 
Giang TH(23) 2004 80 94 / 91 / 94 25 / 78 / 71 QCA (≥50%) 
Ishida M(24) 2005 49 79 87 QCA (≥70%) 
Plein S(25) 2005 102 (incl. 10 

volunteers) 88 82 Angiography 
(>70%) 

Sakuma H(26) 2005 40 70 87 QCA (≥70%) 
Fenchel M(27) 2005 22 81 89 SPECT 
Klem I(28) 

2006 92 84 58 
Angiography 

(≥70%, 
LMS≥50%) 

Cury RC(29) 2006 46 87 89 QCA (≥70%) 
Rieber J(30) 2006 43 88 90 FFR(≤0.75) & 

QCA (>50%) 
Futamatsu H(31) 2007 37 93 57 FFR≤0.75 
Merkle N(32) 2007 228 96 72 Angiography 

(>70%) 
Costa MA(33) 2007 37 93 57 FFR≤0.75 
Barmeyer 
AA(34) 2007 35 84 67 Doppler CFR 

(<2) 
Kühl HP(35) 2007 30 92 92 FFR≤0.75 
 

It has a number of advantages over other tests used in the diagnosis of myocardial 

ischaemia. Patients are not required to exercise, as in the Bruce protocol ETT, which is 
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a frequently encountered stumbling block as the elderly population increases. There is 

no patient radiation exposure, as occurs with SPECT, PET and CT coronary 

angiography. In addition there are no attenuation or scatter artefacts that are also 

common with SPECT and PET. There are no image orientation constraints or 

inadequate windows as can occur during dobutamine stress (DSE) and myocardial 

contrast echocardiography (MCE). A complete assessment of myocardial viability 

including an assessment of left ventricular function, myocardial perfusion and late 

gadolinium enhancement can be performed in less than 1 hour with MRI. The gold 

standard test used to assess MRMPI in the previous studies (Table 1.1) have varied 

considerably with quantitative coronary angiography (QCA) and a visual assessment of 

the coronary angiogram being the most frequent test used with varying degrees of 

stenosis being chosen as the cut-off. QCA is employed in the majority of previous 

studies with 3 different cut-off’s being commonly used: 50%;(14;15;20;23;30); 

70%;(22;24;26;29) and 75%.(11;13;16-18) Visual assessment of the coronary 

angiograms has also been employed without using QCA.(19;21;25;28;32) Bearing in 

mind that degree of stenosis does not correlate with functional significance, we 

undertook the present study to determine the true sensitivity, specificity, positive and 

negative predictive values of MRMPI for the detection of significant CAD. Invasive 

assessment of a coronary stenosis using FFR has been widely accepted as a new gold 

standard in the cardiac catheterisation laboratory. Pressure wire derived FFR can 

reliably identify a flow limiting stenosis in an epicardial coronary artery and has been 

previously validated against what is probably the best current gold standard, PET.(36) It 

is independent of heart rate, blood pressure and contractility, and takes into account the 

contribution of collateral flow to myocardial perfusion.(37) At steady state hyperaemia, 

FFRmyo is calculated as the ratio of the mean distal intracoronary pressure (measured 

by the coronary pressure wire) to the mean arterial pressure (measured by the coronary 
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guide catheter). An FFR value < 0.75 confirms that the stenosis being interrogated has 

the potential to induce ischaemia at maximal hyperaemia.(38;39) In addition to 

determining the true sensitivity, specificity, positive and negative predictive values of 

MRMPI as determined by FFR, we will also compare MRMPI with QCA as has been 

utilised in the previous studies (Table 1.1). 

 

1.2 Magnetic Resonance Myocardial Perfusion Imaging (MRMPI) 

1.2.1 Magnetic Resonance Myocardial Perfusion Imaging (MRMPI) – Technique 

A large number of studies have already been performed in an attempt to determine the 

diagnostic accuracy of MRMPI. The present study was not aimed at repeating old work 

but to determine the true accuracy of this relatively new method of diagnosing 

myocardial ischaemia. Our aim was to provide this information in normal clinical 

practice using the best present gold standard at our disposal, FFR. Table 1.1 lists the 

most relevant work in this field to date. In addition to the advances in the cardiac 

catheterisation laboratory which will be discussed later in this section, there have been 

major advances in scanner technology and sequence development. This has led to the 

rapid acquisition of multiple images at different positions to accurately diagnose regions 

of myocardial hypoperfusion. Improvements in temporal resolution and ECG 

synchronisation allow us to image up to 5 slices of myocardium within one second. 

Depending on heart rate this means we can image multiple slices per heartbeat within 

the R-R interval. This rapid acquisition of images enables us to follow a bolus of 

paramagnetic contrast agent, a chelation compound of gadolinium, as it passes through 

the heart. As the contrast reaches the myocardium perfusion defects emerge as areas of 

hypoenhancement. The pulse sequences we currently have available allow us to null the 

myocardium prior to the arrival of the gadolinium in order that the myocardium “lights 
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up” as it passes through. As shown in table 1.2 the majority of studies have chosen a 

fast gradient echo sequence such as turboFLASH (Fast Low Angled Shot) or an EPI 

(Echo Planar Imaging) sequence. The sequence used in this study is a fast gradient echo 

sequence which is T1 weighted. This means that the image generated shows differences 

in T1 times of the tissues scanned. The details of the sequence parameters can be found 

in appendix 2. This sequence has a short time to echo (TE) of 0.99msecs and a low flip 

angle of 8 degrees. This is the angle of the net magnetisation vector which is generated 

by the alignment of excess protons within the magnetic field of the scanner. Keeping the 

TE short and flip angle low and using a relatively short repetition time (TR - the time 

between each of the excitation pulses) allows for rapid image acquisition and imaging 

of multiple slice planes within each heartbeat. Multiple previous studies chose a 

gradient echo sequence for acquisition of their perfusion images as shown in table 

1.2.(11-13;19;25;26;28;30;31;33;34). EPI on the other hand allows for rapid image 

acquisition as a result of a rapidly switching magnetic field gradient which follows the 

radiofrequency pulse generating many gradient echoes. Image acquisition using this 

technique is rapid however the signal to noise ratio (SNR) is reduced. Various 

techniques can be used to improve image quality including acquiring the data using a 

multi-shot technique. EPI has mainly tended to be used as a hybrid sequence along with 

gradient echo in studies using a General Electric (GE) or Philips scanner as highlighted 

in table 1.2.(14-18;20-24;29;35) Either of these pulse sequences can be utilised so long 

as scanning is fast and an in-plane resolution of 2-3mm can be achieved in order to 

visualise the endocardial and epicardial layers of the left ventricular myocardium. 
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Table 1.2 - MRI scanner make and sequence used in previous MRMPI studies 1994 – 

2007. The myocardial coverage and method of analysing these scans is also presented. 

Author Year Scanner Sequence Slices Analysis 
Eichenberger 
AC(11) 1994 GE 1.5T Gradient 

Echo 3 per R-R Normalised 
Upslope 

Keijer JT(12) 2000 Siemens 1T turboFLASH 2 per R-R MCE, upslope, 
1/MTT 

Al-Saadi N(13) 2000 Philips 1.5T TGE 1 per R-R MPR linear fit 
Schwitter J(14) 2001 GE 1.5T Hybrid EPI 4 per 2 

R-R Upslope 

Bertshinger 
KM(15) 2001 GE 1.5T Gradient 

Echo / EPI 
4 per 2 

R-R Upslope 

Ibrahim T(16) 2002 Philips 1.5T Fast hybrid 
sequence 3per R-R Upslope index 

and peak SI 
Nagel E(17) 2003 Philips 1.5T TGE/EPI  5 per R-R MPRI 
Ishida N(18) 2003 GE 1.5T Gradient 

Echo / EPI 
7-8 per 
2 R-R Qualitative 

Plein S(19) 2004 Philips 1.5T Segmented 
K-space TGE 4 per R-R Qualitative 

Paetsch I(20) 2004 Philips 1.5T TGE/EPI 3 per R-R Qualitative 
Takase B(21) 2004 GE 1.5T TGE/EPI 8 per 2 

R-R Qualitative 

Wolff SD(22) 2004 GE 1.5T Segmented 
EPI 

6-8 per 
2 R-R Qualitative 

Giang TH(23) 2004 GE 1.5T Hybrid EPI 6-8 per 
2 R-R 

Qualitative + 
Upslope data 

Ishida M(24) 2005 GE 1.5T TGE/EPI 7-8 per 
2 R-R Qualitative 

Plein S(25) 2005 Philips 1.5T TGE with 
SENSE 4 per R-R MPRI 

Sakuma H(26) 2005 Siemens 
1.5T turboFLASH 5-6 per 

2 R-R Qualitative 

Fenchel M(27) 2005 Siemens 
1.5T True FISP 3 per R-R Semiquatitative 

PMRS 
Klem I(28) 2006 Siemens 

1.5T 
Gradient 

echo 
4-5 per 

R-R Qualitative 

Cury RC(29) 2006 GE 1.5T TGE/EPI 5-8 per 
2 R-R Qualitative 

Rieber J(30) 2006 Siemens 
1.5T turboFLASH 3 per R-R Upslope MPRI 

Futamatsu 
H(31) 2007 Siemens 

1.5T 
Gradient 

echo 3 per R-R Fermi MPR 

Merkle N(32) 2007 Philips 1.5T SSFP with 
SENSE 3 per R-R Qualitative 

Costa MA(33) 2007 Siemens 
1.5T 

Gradient 
echo 3 per R-R Fermi MPR 

Barmeyer 
AA(34) 2007 Siemens 

1.5T 
Gradient 

echo SSFP 3 per R-R Upslope MPRI 

Kühl HP(35) 2007 Philips 1.5T TGE/EPI 3 per R-R Upslope MPR 
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In addition to differences in pulse sequence used between studies the dose of 

gadolinium infused during these pulse sequences varies (Table 1.3). The lowest dose 

utilised was 0.025mmol/kg,(13;17;27) and the highest 1.5mmol/kg which was used in 

two optimal dose finding studies.(22;23) Other studies have used doses between these 

levels possibly due to local experience and expertise in interpreting images with the 

chosen concentration of gadolinium or possibly depending on the method chosen to 

analyse the images. For studies attempting to quantify absolute myocardial perfusion 

reserve a dose of gadolinium of less than 0.05mmol/kg would be best used when 

employing a T1 weighted gradient echo sequence.(31) Only at this lower dose of 

gadolinium is the relationship between signal intensity and gadolinium concentration in 

the left ventricle linear.(40) High doses of gadolinium result in full magnetisation 

recovery with a long saturation delay which can cause clipping of the AIF, which is the 

signal intensity / time curve for the bolus of gadolinium within the left ventricular blood 

pool.(41) Clipping leads to underestimation of the AIF which leads to inaccuracies in 

measuring the myocardial perfusion reserve (MPR). This will be discussed later as a 

method of quantifying myocardial blood flow. 

 

Giang et al, in 2004 published a study using different doses of gadolinium in 94 patients 

with known or suspected coronary arterial disease from 3 different centres in 

Europe.(23) Three different doses of gadolinium were studied including 0.05, 0.1, 

0.15mmol/kg body weight. Patients thereafter had coronary angiography performed and 

a DS on QCA ≥50% was considered significant. MRI scans were analysed using a 5 

point linear fit to calculate the maximum upslope at stress (adenosine stress only 

protocol) using a semi-automatic program in a core laboratory. The study found that the 

area under the receiver operator curves (ROC) was significantly greater when either of 
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the higher doses of gadolinium were used (0.91 for 0.1mmol/kg, 0.86 for 0.15mmol/kg 

and 0.53 for 0.05mmol/kg).(23) 

 

Another multicentre dose-ranging study was published in 2004 by Wolff et al.(22) This 

study was conducted at 3 international sites and recruited 99 patients. The same three 

doses of gadolinium were studied again using intravenous adenosine as the stress agent. 

On this occasion the MRI scans were interpreted visually by 4 independent blinded 

observers. The gold standard for the diagnosis of significant coronary artery disease was 

higher at ≥70% DS by QCA. In this study the low dose (0.05mmol/kg) of gadolinium 

performed best (area under the ROC curves - 0.9 for 0.05mmol/kg, 0.72 for 0.1mmol/kg 

and 0.83 for 0.15mmol/kg). The difference between the two lower doses was significant 

at p=0.02.(22) Taking these two studies together suggests that low dose gadolinium is 

best for visual assessment of MRMPI scans whereas semi-quantification using a semi-

automated computer program works best at medium or high doses. We chose the 

intermediate dose of 0.1mmol/kg in this study as we planned to perform both visual and 

semi-quantitative assessments. 
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Table 1.3 - Stress agent, gadolinium dose and infusion rate used in previous MRMPI 

studies 1994 – 2007. 

Author 
Year Stressor 

Gadolinium 

Dose (mmol/kg) 

Gd Injection 

Rate (ml/s) 

Eichenberger AC(11) 1994 Dipyridamole 0.05 Over 5secs 

Keijer JT(12) 2000 Dipyridamole 0.03 Hand-injection 

Al-Saadi N(13) 2000 Dipyridamole 0.025 Hand-injection 

Schwitter J(14) 2001 Dipyridamole 0.1 3 

Bertshinger KM(15) 2001 Dipyridamole 0.1 3 

Ibrahim T(16) 2002 Adenosine 0.05 3 

Nagel E(17) 2003 Adenosine 0.025 8 

Ishida N(18) 2003 Dipyridamole 0.075 4 

Plein S(19) 2004 Adenosine 0.05 6 

Paetsch I(20) 2004 Adenosine 0.05 4 

Takase B(21) 2004 Dipyridamole 0.1 Not available 

Wolff SD(22) 2004 Adenosine 0.05/0.1/0.15 5 

Giang TH(23) 2004 Adenosine 0.05/0.1/0.15 Over <5 secs 

Ishida M(24) 2005 Dipyridamole 0.075 4 

Plein S(25) 2005 Adenosine 0.05 6 

Sakuma H(26) 2005 Dipyridamole 0.03 Not available 

Fenchel M(27) 2005 Dipyridamole 0.025 5 

Klem I(28) 2006 Adenosine 0.065 3.5 

Cury RC(29) 2006 Dipyridamole 0.1 5 

Rieber J(30) 2006 Adenosine 0.05 5 

Futamatsu H(31) 2007 Adenosine 0.04 Not available 

Merkle N(32) 2007 Adenosine 0.1 6 

Costa MA(33) 2007 Adenosine 0.1 10 

Barmeyer AA(34) 2007 Adenosine 0.05 5 

Kühl HP(35) 2007 Adenosine 0.025 5 

 

Table 1.3 also demonstrates the rate of injection of gadolinium chosen in the previous 

studies. For the purposes of quantification of myocardial perfusion a rapid injection is 

preferred in order to achieve a sharp AIF curve which would not be achievable using a 
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hand injection as was used in some of the previous studies (table 1.3). The majority of 

previous studies have chosen an injection rate of ≥4ml/second using a power injector. 

 

The stress agent used in the early studies of MRMPI imaging was almost exclusively 

dipyridamole, however this has been superseded by intravenous adenosine which gives 

a more controlled period of hyperaemia and a far shorter half life and therefore shorter 

duration of side effects.(42) Adenosine and dipyridamole will be discussed in greater 

detail later in this introduction. 

 

1.2.2 Magnetic Resonance Myocardial Perfusion Imaging (MRMPI) – The Evidence 

So Far 

The major findings of the largest studies in this field are presented in Table 1.1. The 

sensitivities and specificities of MRMPI for the detection of functionally significant 

coronary arterial disease not surprisingly vary with the differing scanners, pulse 

sequences, angiographic gold standards, gadolinium dose and method of analyzing the 

scans used. The data to date indicate that MRMPI scanning is a good test comparable to 

other non-invasive tests currently employed such as SPECT and stress 

echocardiography. Perhaps the pivotal study in this field to date was published by 

Schwitter et al in 2001.(14) In this study MRMPI scanning was compared with coronary 

angiography and PET which is widely considered to be the current non-invasive gold 

standard. Forty-eight unselected patients with suspected coronary disease were studied 

by MRMPI prior to coronary angiography, using dipyridamole as the vasodilating stress 

agent. A further 18 healthy volunteers were also studied by MR alone. 13N-ammonia 

PET examination was performed prior to coronary angiography. The invasive gold 

standard for the diagnosis of significant coronary artery disease was QCA with a degree 

of stenosis ≥50% in any of the three coronary arteries. MRMPI scans were interpreted 
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using the relative upslope of the signal intensity / time curve for multiple sectors of 

myocardium corrected for the precontrast signal and also the AIF. Analysis of the 

subendocardial upslope data provided a sensitivity of 91% and specificity of 94% when 

compared with PET and a sensitivity of 87% and specificity of 85% when compared 

with QCA. The number of hypoperfused sectors on PET and MRMPI correlated well 

with r=0.76. This study concluded that MRMPI can reliably diagnose patients with 

significant coronary disease and also provide information of the amount of ischaemic 

myocardium under threat.(14) 

 

During the course of this research project four studies were published in which FFR was 

used as one of the methods of assessing whether coronary arterial disease was 

significant in causing myocardial ischaemia.(30;31;33) As shown in table 1.1 two of 

these studies by Futamatsu et al and Costa et al produced the same results in the same 

number of patients and were from the same centre in Florida, USA. These studies 

recruited 37 patients however the comparison between FFR and MPR was only made in 

44 coronary segments. These studies found an excellent sensitivity of 92.9% however 

specificity was lower at 56.7% when using absolute myocardial blood flow derived 

myocardial perfusion reserve (MPR) of the coronary sectors corresponding to the 

supplying coronary artery.(33) Rieber et al published a study of 43 patients with 

suspected or known coronary artery disease in 2006.(30) In this study, patients had 

upslope derived MPRI values calculated for coronary segments from the MRMPI scan 

and then had coronary angiography with QCA measurements and a FFR study 

performed. This study reported a sensitivity of 88% and specificity of 90% however 

again only 42 of 129 coronary territories had FFR measurements performed.(30) Kühl 

et al also published their study of 30 patients (20 patients with CAD and 10 without 

CAD) in 2007. In this study upslope derived MPR was calculated and compared with 
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FFR. An excellent sensitivity and specificity of 92% was found however FFR again was 

only estimated in 28 of 90 coronary artery territories.(35) These studies will be 

discussed in more detail in the results section where comparisons will be made with the 

present research study. 

 

1.2.3 Myocardial Perfusion Reserve Index 

Analysis of MRMPI scans can be performed by a qualitative, semi-quantitative or fully 

quantitative approach. Ideally all scans would be analysed by an automated system 

providing absolute myocardial flow in ml/g/min, however no commercially available 

software in current existence can perform this task in a non-labour intensive, non-time 

consuming and inexpensive way. As shown on table 1.2, almost half of the previous 

studies performed to date have chosen a qualitative approach to analysis. (18-

24;26;28;29;32) Using this method blinded observers visualise both rest and stress scans 

together and diagnose perfusion defects on the basis of visual appearance. Some 

investigators advocate that a dark subendocardial rim must be present at stress for 5 or 

more cardiac cycles and be absent at rest in order to diagnose a reversible perfusion 

defect. Other studies allow perfusion defects to be diagnosed at the discretion of the 

experienced observers. Dark subendocardial defects at both stress and rest may 

represent infarction or may be due to dark rim artefact.(43) Artefacts caused by 

susceptibility are unfortunately common in perfusion imaging and are most common 

with gradient echo and EPI pulse sequences at the interface between tissues. This is 

important at the interface of the LV blood pool and the subendocardium where dark 

areas may be mistaken for perfusion defects. 

 

Some of the MPRI studies have chosen a semi-quantitative method to analyse their 

scans as shown in table 1.2.(11-17;23;25;27;30;34) This method of analysis is model 
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free and uses the signal intensity / time curves generated for each of the myocardial 

segments of interest under conditions of stress and at rest and also the left ventricular 

blood pool.(10) Over the years multiple different approaches to this data have been 

utilised including: analysis of the peak signal intensity of the gadolinium in each of the 

myocardial segments during the first pass; upslope / rate of enhancement of 

myocardium calculated by analysing the initial increase in signal intensity during the 

first pass; time to peak signal intensity of the gadolinium bolus as it perfuses the 

myocardium; the mean transit time of the gadolinium bolus to pass through a 

myocardial segment and the area under the signal intensity / time curve for a segment of 

myocardium. The difficulty with the majority of these parameters is the large inter-

individual variation of normal which makes it difficult to compare results between 

patients. The most common semi-quantitative parameter used in the previous literature 

is the upslope of the signal intensity / time curve for individual myocardial segments 

(table 1.2). This has been shown to correlate well with changes in blood flow when 

using radiolabelled microspheres in dogs.(44) In order to calculate the upslope of the 

curves at stress and rest they must first be smoothed by using a function to approximate 

the shape of the signal intensity / time curve. A gamma variate function can be applied 

to the curves for this purpose prior to determining the upslope.(45) A simpler method of 

performing this is to select a line of best fit between the signal intensity points on the 

upslope curve and determine the upslope value from this. This method was chosen in 

the previously described study by Schwitter et al in 2001 where excellent sensitivities 

and specificities were obtained in a comparison with PET imaging.(14) A signal 

intensity / time curve for the left ventricular blood pool should be calculated in addition 

to those curves for the myocardial sectors. This curve is known as the arterial input 

function (AIF) and must be taken into account when determining the myocardial 

upslope curves as these vary depending on the AIF. The upslopes of the myocardial 
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signal intensity / time curves are divided by the upslope of the AIF at both stress and 

rest. It is also useful to subtract baseline signal intensity prior to gadolinium injection 

from the curves in order that the upslope starts from a signal intensity measurement of 

zero. The myocardial perfusion reserve index (MPRI) is then calculated for each of the 

myocardial segments of the AHA model by dividing the stress upslope by the resting 

value. MPRI can also be calculated by using the maximum signal of each of the 

myocardial segments and dividing the stress by the rest value as described above. This 

was one of the parameters chosen in the present study. Another approach to dealing 

with the effects of the AIF on the myocardial signal intensity / time curve is by 

performing deconvolution of the signal intensity / time curves which more accurately 

accounts for the kinetics of the gadolinium bolus. This requires a low dose of 

gadolinium to be used as mentioned above (<0.05mmol/kg) so that the relationship 

between gadolinium concentration and the signal intensity is linear. As deconvolution is 

sensitive to noise a Fermi function is applied to the curves. This method has been 

mainly developed as a method of absolute quantification of myocardial flow and has 

been extensively validated.(46;47) It was used for the analysis of two of the previous 

studies listed in table 1.2.(31;33) 



 43

1.3  Coronary Pressure Wire 

1.3.1 Fractional Flow Reserve (FFR) 

The measurement of FFR in the cardiac catheterisation laboratory was developed in 

order to assess the functional significance of a moderate coronary artery stenosis in 

which it can be difficult to decide if the lesion is significant. RADI Medical Systems 

Ltd have developed a coronary guide wire which has a highly sensitive pressure and 

temperature sensor 3cm from the tip. This wire is passed into the distal third of a 

coronary artery where it can measure distal coronary pressure. Simultaneously aortic 

pressure is measured using the guide catheter. FFR is calculated by dividing distal 

coronary pressure by aortic pressure and the normal value for this index is 1.0 in arteries 

with no coronary disease. The measurements are made under conditions of maximal 

hyperaemia induced by intravenous adenosine at an infusion rate of 140 micrograms per 

kg per minute, as used in the present study, or using intra-coronary adenosine at far 

smaller doses, or also intra-coronary papaverine.(48) In a patient with normal coronary 

arteries with a mean distal coronary pressure (Pd) of 100 mmHg and a mean aortic 

pressure (Pa) of 100 mmHg, this would give a FFR of 1.0. In a patient with significant 

coronary disease and a distal coronary pressure of 60mmHg and an aortic pressure of 

100mmHg this would provide a FFR of 0.6. Multiple studies have shown that a stenosis 

with a FFR of less than 0.75 is highly likely to cause reversible myocardial ischaemia. 

One of the first studies demonstrating this cut-off was published in 1995 by Pijls et 

al.(49) In this study 60 patients with single vessel coronary artery disease and a positive 

ETT had the FFR measured in the stenotic artery prior to and following percutaneous 

coronary angioplasty. These patients had a repeat ETT performed between 5 and 7 days 

post angioplasty and only if the ETT post angioplasty was normal was the FFR pre-

angioplasty taken as being associated with reversible myocardial ischaemia. In all 
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patients a FFR of less than or equal to 0.74 was associated with reversible myocardial 

ischaemia. 

 

Pjils et al published a landmark paper in the New England Journal of Medicine in 1996 

describing the utility of FFR in a group of 45 patients who suffered from chest pain and 

had a coronary artery stenosis on coronary angiography of approximately 50% by visual 

estimation.(39) Each of these patients had a degree of clinical uncertainty as to whether 

their chest pain was related to reversible myocardial ischaemia. They all underwent a 

bicycle ETT, a thallium nuclear perfusion scan, dobutamine stress echocardiography 

(DSE) and a coronary angiogram with measurement of the FFR. Patients had PCI or 

bypass surgery performed based on a FFR with a cut off of 0.75. Those patients who 

were revascularised and had positive evidence of reversible myocardial ischaemia on 

the non-invasive tests had these tests repeated within 6 weeks of the revascularisation 

procedure. Twenty one patients had coronary disease with a FFR of less than 0.75. Each 

of these patients had evidence of reversible myocardial ischaemia on at least 1 of their 

non-invasive tests. Following revascularisation, these positive non invasive test results 

returned to normal. Of the 24 patients with an FFR of greater than or equal to 0.75, 21 

had no evidence of reversible myocardial ischaemia on any of the non invasive tests 

performed. In this study FFR was determined to have a sensitivity of 88%, specificity 

100%, positive predictive value 100% and a negative predictive value of 88%. The 

overall diagnostic accuracy was 93%. 

 

The value of FFR was also assessed in patients with serial stenoses within a single 

coronary artery. Thirty two patients were included in this study. They had been referred 

for PCI of arteries which had greater than or equal to 2 stenoses with greater than or 

equal to 50% degree of stenosis by visual examination. These stenoses had to be 
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separated by a normal length of artery of greater than or equal to 2cm. During the 

pressure wire study the wire was passed into the distal coronary artery beyond the 

stenoses and then pulled back measuring the FFR during maximal hyperaemia at points 

prior to and proximal to the stenoses. The lesion with the largest pressure gradient was 

then dilated and stented and the FFR recorded again. If there continued to be a pressure 

gradient, the second stenosis was also angioplastied and stented. A repeat FFR was then 

performed with a pull back at the end of the procedure. A predicted FFR was calculated 

prior to PCI given the pressure gradient across each stenosis. In this study, the predicted 

FFR correlated very well with the measured FFR in all patients with an R value of 0.92. 

This study confirmed that the measurement of FFR in this manner helps identify those 

stenoses requiring PCI and provides a functional result of the angioplasty performed. 

This was postulated to minimise unnecessary procedures on stenoses that were not 

haemodynamically significant. This would therefore reduce the risk of complications 

during the procedure or the development of in-stent re-stenosis in the future.(50) 

 

FFR has also been validated in patients who have had a prior MI. FFR is independent of 

LVEF.(51) It was however not known if a change in the mass of viable myocardium 

served by coronary artery would affect the 0.75 cut off value of FFR which had 

previously been used in patients without prior MI. Fifty-seven patients who had a 

documented MI without any akinetic segments on visual assessment of the LV 

angiogram were studied. They had normal contractility in other coronary territories and 

were scheduled for coronary angioplasty of the infarct related artery. Each of these 

patients also had an adenosine stress single photon emission scintigraphy (SPECT) scan 

performed prior to and following coronary intervention. The FFR was measured before 

and after PCI. The sensitivity, specificity, positive and negative predictive values of 

using the 0.75 cut-off of FFR in detecting flow mal-distribution on SPECT imaging was 
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82%, 87%, 81% and 91% respectively. As expected, patients with the lowest FFR 

values had positive SPECT imaging pre-angioplasty. These FFR values were 

significantly lower than those patients with negative SPECT scanning with p=0.0079. 

This study confirmed that an FFR cut-off of 0.75 distinguished those post MI patients 

with positive and negative SPECT imaging. Thus, FFR can still be used in patients 

undergoing pre-discharge coronary angiography following a MI.(52) 

 

As well as determining the significance of a coronary artery stenosis in inducing 

myocardial ischaemia, FFR can also be used to predict the clinical outcome of 

percutaneous coronary angioplasty. In one study, 66 patients who had undergone 

balloon angioplasty to a single vessel were studied. They all had normal left ventricular 

function.(53) Each of these patients had a positive ETT within 24 hours of the balloon 

angioplasty. The FFR was measured prior to and following successful balloon 

angioplasty and the ETT was repeated between 5 to 7 days thereafter. Fifty eight 

patients of the sixty recruited had successful balloon angioplasty. Twenty four month 

follow up was obtained for all patients, during which time 16 adverse events occurred. 

These were defined as death, MI, unstable angina, coronary artery bypass surgery, 

repeat PCI or the recurrence of angina with a positive ETT. A multi-variant logistic 

regression analysis was performed and showed that the post-percutaneous coronary 

angioplasty FFR was the most significant independent predictor of adverse cardiac 

events. These data suggest that an FFR greater than or equal to 0.9 indicates an optimal 

functional PCI result, whereas values between 0.75 and 0.9 were felt to be initially 

successful, however overall suboptimal. The degree of stenosis following angioplasty 

was measured as a separate parameter in this study and the authors concluded that a 

degree of stenosis of less than or equal to 35% and an FFR greater than or equal to 0.9 

provided excellent clinical outcome at 2 years.(53) Beck et al also examined the 
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usefulness of FFR in determining how appropriate angioplasty was in arteries with 

moderate coronary stenosis.(3) This study followed previous studies which suggested 

that patients who had a coronary stenosis with an FFR greater than 0.75 were safe to be 

deferred without coronary angioplasty with excellent clinical outcome.(39;54) Three 

hundred and twenty five patients referred for elective PCI of lesions greater than 50% 

diameter by visual assessment were recruited into the study. None of these patients had 

any evidence of reversible ischaemia by non invasive testing. Prior to percutaneous 

coronary angioplasty patients were randomised into a defer or a performance group. 

Following coronary angiography the FFR was measured in the artery of interest. In 

those patients who were randomised to deferral, angioplasty was only performed if the 

FFR was less than 0.75. Patients randomised to performance of PCI underwent the 

procedure regardless of whether the FFR was less than 0.75 or greater than or equal to 

0.75. Those patients initially randomised to either deferral or performance of PCI who 

had an FFR of less than 0.75 were categorised as being in the reference group. Those 

patients in the performance group who had PCI performed despite an FFR greater than 

or equal to 0.75 were defined as the perform group. Clinical follow up of these patients 

was obtained at 1, 3, 6, 12 and 24 months. Interestingly, the event free survival is 

similar between the deferral and the performance group with 92% vs 89% at 12 month 

follow up and 89% vs 83% at 24 month follow up. The reference group had a 

significantly lower event free survival at 80% at 12 months and 78% at 24 months. The 

reference group however had a significantly higher percentage of patients free from 

angina at 67% at 12 months and 80% at 24 months compared to 49% in a deferral group 

and 50% in a performance group at 12 months and 70% in a deferral group and 51% in 

a performance group at 24 months. These 2 year follow up data conclude that in patients 

without non invasive evidence of reversible myocardial ischaemia, the measurement of 

FFR with a value less than 0.75 identifies patients in whom PCI is appropriate and 
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improves functional angina class. Patients with an FFR greater than 0.75 in this study 

did not benefit from PCI.(3) A 5 year follow up of these patients was published in the 

Journal of the American College of Cardiology in 2007.(55) Complete long term follow 

up was obtained in 313 patients at 5 years (97%). Again, there was no difference in 

event free survival between the defer and the perform groups (80% vs 73%). However, 

event free survival was significantly lower in the reference group at 63% despite having 

PCI performed. Patients with a significant stenosis with an FFR less than 0.75 which 

was treated by PCI had a 5 times greater chance of cardiac death or acute MI than 

patients with similar angiographic findings but a FFR greater than or equal to 0.75 that 

was treated by medical therapy (p = 0.002). The prognosis of a non significant stenosis 

(FFR greater than or equal to 0.75) was excellent with a rate of death or acute MI 

related to that stenosis of less than 1% per year. This rate was not reduced by PCI as 

demonstrated in the perform group. The composite rate of cardiac death and acute MI in 

the defer, perform and reference groups was 3.3%, 7.9% and 15.7% at 5 years follow 

up. There was no difference in the percentage of patients free of angina at 5 year follow 

up in defer or perform groups. These 5 year follow up data confirmed that patients 

treated by PCI did significantly worse than patients with a stenosis and an FFR greater 

than or equal to 0.75. This study did not include any patients with unstable coronary 

syndromes.(55) 

 

Measurement of the FFR following stenting has been shown to be a strong independent 

predictor of clinical outcome at 6 months in 750 patients who all underwent coronary 

stenting in a multicentre study involving Europe, the United States and Asia.(56) 

Adverse events were recorded as death from any cause, acute MI or repeat target vessel 

revascularisation by PCI or CABG. Multi-variant analysis showed that FFR measured 

immediately following stenting was the most significant and dependent variable related 
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to all types of adverse events. In patients with a post stent FFR of 0.9 to 0.95 the 

adverse event rate was 6.2% compared to those patients with a post stent FFR less than 

0.9 who had an adverse event rate of 20.3%. If the post stent FFR was less than 0.8 the 

adverse event rate was 29.5%. This study highlights the value of measuring FFR 

following angioplasty and stenting to predict adverse events at 6 months follow up. 

 

Therefore FFR has been shown to be an extremely useful technique, not only in the 

determination of functionally significant coronary artery disease but also in the guiding 

of PCI.(57) As is the case with many biological measurements there is no exact cut off 

for the determination of a significant coronary stenosis. A grey area is known to exist 

between 0.75 and 0.8 in which a lesion may be capable of inducing myocardial 

ischaemia. This is taken into account in the results of this research study. 

 

1.3.2 Coronary Flow Reserve (CFR) 

Thermodilution derived (CFR) is another physiological parameter that can be measured 

using the RADI coronary guide wire. While FFR gives us information regarding the 

stenosis severity in the epicardial coronary artery, CFR on the other hand provides 

information on the microvascular resistance as well as epicardial coronary disease. Prior 

to the development of the coronary pressure wire with a temperature sensor, FFR and 

CFR had to be measured using 2 separate wires. The aforementioned RADI pressure 

wire has the capabilities of measuring thermodilution derived CFR. The shaft of the 

pressure wire which monitors temperature dependent electrical resistance acts as a 

proximal thermistor and the distal sensor, 3cm from the tip, has capabilities of 

measuring both pressure and temperature. Following the injection of a bolus of saline 

the shaft of the wire detects the start of the injection and the distal sensor detects the 

bolus as it passes the distal coronary artery. Thermodilution derived CFR can be 
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calculated by dividing the mean transit time of a 3ml bolus of room temperature saline 

at rest by the transit time at maximal hyperaemia induced by a continuous infusion of 

intravenous adenosine at 140 micrograms/kg/minute. This assumes that the epicardial 

volume remains unchanged between injections. Doppler derived CFR measurements 

have been available using a specific Doppler wire for some time. The new method by 

thermodilution has been validated using an in-vitro model and also an animal model (6 

mongrel dogs). In the initial validation study 360 paired flow velocity measurements 

and thermodilution curves were obtained in the animal model. In this study 3 sets of 

measurements were obtained for each curve to provide the mean transit time of a bolus 

of saline. A significant correlation was found between the Doppler derived CFR 

measurements and the thermodilution derived measurements with an r value of 0.76. In 

the in-vitro model there was a significant correlation between absolute flow 

measurements and the mean transit time of a bolus of saline (r=-0.75). This study 

concluded that the mean transit time of a 3 ml hand injected bolus of saline at room 

temperature closely correlates with absolute flow using the in-vitro model and flow 

velocity recorded using the Doppler wire in mongrel dogs.(58) In 2002 the coronary 

thermodilution method of calculating CFR using the same wire as used to calculate the 

FFR was validated in humans. This was again performed using simultaneous recordings 

of the Doppler derived CFR. In this study 50 patients were included using 103 coronary 

arteries. These patients had all been referred for physiological assessment of at least 1 

coronary stenosis. In the cardiac catheterisation laboratory both the RADI pressure wire 

and a Doppler wire were passed distal to the coronary stenosis. Maximal hyperaemia 

was achieved using either intravenous adenosine at a dose of 140 micrograms/kg/minute 

or by the administration of intracoronary papaverine at a dose of 50 to 20mg. The FFR, 

thermodilution derived CFR and Doppler derived CFR were all measured pre and post 

angioplasty. A significant correlation was found between thermodilution derived and 
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Doppler derived CFR with r=0.80 and p<0.0001.(59) Being able to measure 

thermodilution derived CFR in addition to FFR using the same wire allows the clinician 

determine to what extent microvascular disease is contributing to inducible ischaemia. 

Using the same wire means that there is no increase in cost compared to the 

measurement of FFR on its own.(59) In 2002 thermodilution derived CFR was validated 

in clinical practice in 8 hospitals within 5 countries in Europe. Eighty six patients who 

had been referred for physiological assessment +/– coronary angioplasty of at least 1 

stenosis were included into the study. Both the thermodilution derived CFR and 

Doppler derived CFR were measured prior to angioplasty. The data from 27 patients 

were excluded due to sub-optimal Doppler tracings. Ninety seven percent of these 

patients had a thermodilution derived CFR measured. When these two methods were 

compared the r value was 0.79 with p<0.0001. CFR measurements obtained by the 

thermodilution method had a tendency to be higher than that recorded by Doppler flow 

velocity (2.2 vs 2.0). This study however, confirmed that thermodilution derived CFR 

measurements was both feasible and reliable in a multi-centre setting.(60) A further 

study also compared pressure derived CFR with flow derived CFR in an animal model 

and also velocity derived CFR in 30 patients. This study provided an r value of 0.92 in 

the animal model compared to 0.85 in humans. This was similar to those values 

obtained in previous studies.(61) Also in 2003 an open chest pig model was developed 

at the University of Stanford in order to compare thermodilution derived CFR with 

Doppler derived CFR and absolute flow derived CFR. Interestingly in this model the 

thermodilution derived method was found to correlate better with absolute flow derived 

CFR than the Doppler derived CFR.(62) 

 

The ability of Doppler derived CFR to predict outcome following PCI was studied in 

379 patients. Peri-procedural outcome was compared to CFVR results at the end of the 
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procedure and separated into those with a CFVR greater than or equal to 2.5 or a CFVR 

less than 2.5. In this study a low CFVR was associated with a worse peri-procedural 

outcome at 30 days. There was however, no difference between groups on late follow 

up at 1 year.(63) Thermodilution derived CFR using the RADI pressure wire was used 

to examine the effects of diabetes mellitus on collateral flow index (CFI) in patients 

with stable coronary heart disease. In this study, 100 patients with diabetes mellitus and 

100 non diabetics had pressure wire derived coronary CFI or Doppler flow velocity 

derived CFI measured or both. Interestingly this was found not to differ between 

diabetic and non diabetic patients, even when angiographically normal arteries or 

chronic totally occluded arteries were studied.(64) 

 

1.3.3 Index of Microcirculatory Resistance (IMR) 

During the course of this project a novel method of assessing the coronary 

microcirculation invasively was developed. CFR reflects the epicardial coronary artery 

as well the microcirculation. Most previous studies noted that thermodilution derived 

CFR tended to overestimate CFR when compared to Doppler derived values with the 

differences ranging up to 20%.(59) In addition, CFR by thermodilution may be 

overestimated where large side branches originate proximal to a coronary stenosis. 

Thermodilution derived CFR required intravenous adenosine in order to maintain 

maximal hyperaemia for at least 30 seconds in order for the curves to be obtained. This 

is unlike Doppler derived CFR or FFR where bolus intra-coronary injections of 

adenosine or papaverine may be used. As IV adenosine results in a drop in systemic 

blood pressure by up to 15% this may cause an underestimation of CFR. In clinical 

practice trying to obtain 3 identical thermodilution curves, especially at rest, can be 

difficult depending on guide catheter engagement and the position of the distal sensor. 
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The index of microcirculatory resistance (IMR) is a novel parameter which provides 

information on the the coronary microcirculation independently of the status of the 

epicardial coronary artery. It is defined as distal coronary pressure multiplied by the 

mean transit time of a bolus of saline injected at room temperature during maximal 

hyperaemia. The calculation of IMR assumes that at maximal hyperaemia the variability 

of resting vascular tone and haemodynamics will be eliminated thus achieving the 

minimum microvascular resistance. In an open chest porcine model, using Yorkshire 

swine, the true microcirculatory resistance (TMR) defined as distal coronary pressure 

divided by absolute coronary flow at hyperaemia was compared with IMR in left 

anterior descending coronary arteries. The microcirculation was disrupted with micro-

spheres and measurements repeated within a normal epicardial artery and after the 

creation of an epicardial coronary artery stenosis. Sixty one measurements of TMR and 

IMR were made and a significant correlation was found on linear regression analysis 

with r=0.87 and p<0.001. The mean IMR and TMR increased significantly to a similar 

degree after the coronary microcirculation was disrupted using micro-spheres. This 

study proved that IMR could be measured quantitatively using a coronary pressure 

wire.(65) In order to further validate the independency of the index of microcirculatory 

resistance over a range of epicardial coronary stenoses, a further study was 

conducted.(66) In this study an in-vitro model was developed to mimic the human heart 

with an external coronary occluder to provide a range or coronary stenoses. The inverse 

mean transit time of a bolus of saline correlated well with absolute blood flow 

(R2=0.93) and an excellent correlation was again found between the index of 

microcirculatory resistance and the true myocardial resistance (R2=0.94).(66) IMR was 

again confirmed to be independent of epicardial stenosis severity. Researchers then 

realised that the minimum achievable microvascular resistance actually increased as 

epicardial stenosis severity increased. Previous work had not taken into account the 
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contribution of collateral flow to myocardial resistance and therefore the open chest pig 

model was used again to look at the index of microcirculatory resistance, however on 

this occasion coronary wedge pressure (Pw), which is a measure of collateral flow, was 

incorporated into the equation. Bearing this in mind, the index of microcirculatory 

resistance can be calculated by multiplying aortic pressure by mean transit time of a 

bolus of saline at hyperaemia and multiplying this by coronary FFR, which is calculated 

by subtracting the wedge pressure from distal coronary pressure divided by aortic 

pressure minus wedge pressure. The equation is therefore as follows:- 

 

IMR = Pa x Tmn x (Pd-Pw)/(Pa-Pw) 

 

Using the open chest pig model, measurements of IMR were compared with the 

apparent minimal microvascular resistance calculated at peak hyperaemia using a flow 

probe and also a true microvascular resistance (R micro). Measurements were made 

with no stenosis present and also after the creation of a moderate and severe epicardial 

stenosis. When collateral flow was not taken into account in determining the index of 

microcirculatory resistance the IMR increased progressively and significantly with 

increasing stenosis severity. Once collateral flow was incorporated as in the above 

formula neither IMR or R micro increased as a result of increasing epicardial 

stenosis.(67) This finding was also confirmed in humans when 30 patients scheduled for 

coronary intervention had different degrees of coronary stenosis reproduced by inflating 

an intra-coronary balloon by different degrees to mimic stenoses of 10%, 50% and 75%. 

This was performed following stenting. At each of the 3 degrees of inducible coronary 

stenosis both the FFR and IMR were measured during an intravenous adenosine 

infusion. A total of 90 measurements were made and again when coronary wedge 

pressure was not taken into account there was an increase in the microvascular 
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resistance noted with increasing stenosis severity. However, when the wedge pressure 

was incorporated into equation there was no increase in IMR with increasing stenosis 

severity.(68) IMR is the most recent haemodynamic parameter provided by the pressure 

wire and to date there has been relatively little work performed. One study has looked at 

the predictive value of IMR in patients who undergo primary PCI for ST elevation MI. 

Twenty nine patients who presented with ST elevation MI within 12 hours of the onset 

of symptoms or after failed fibrinolytic therapy were included in this study. These 

patients had the IMR calculated and the CFR and FFR were also measured. This study 

showed that IMR significantly correlated with peak creatinine kinase (CK) with r=0.61 

and p=0.0005. IMR also correlated with 3 month echo wall motion score with r=0.59 

and p=0.002. Using a multi-variant analysis IMR was the strongest predictor of peak 

CK and 3 month wall motion scoring. In addition to this, IMR was found to be the only 

predictor of recovery of left ventricular function based on the change in wall motion 

score (r=0.5 with p<0.01). The authors of this study concluded that IMR was an 

independent predictor of acute and short term myocardial damage in the setting of 

primary PCI for acute ST elevation MI.(69) 

 

1.4 Adenosine Pharmacological Stress 

For the purpose of this study adenosine will be used as our intravenous pharmacological 

stress agent. This will be utilised in both the first pass magnetic resonance myocardial 

perfusion imaging (MRMPI) scan and also during the coronary artery pressure wire 

studies. Adenosine is a purine nucleoside and has many roles in the regulation of tissue 

function. Adenosine is produced by cells naturally when the tissue is under stress. This 

is a method of autoregulation increasing energy supply to cells under stress by means of 

vasodilation. In the case of myocardium, when the cardiac myocytes are put under strain 

by physical exertion in a patient with coronary disease, the myocardial ischaemia leads 
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to the release of adenosine which in turn causes the supplying coronary artery to 

vasodilate. Adenosine is also known to have a protective effect preventing cellular 

damage caused by ischaemia. Adenosine is also thought to have a role in ischaemic pre-

conditioning where a short period of ischaemia followed by reperfusion prevents cell 

death during longer periods of ischaemia thereafter.(70) During the period of ischaemic 

preconditioning, adenosine in the cell interstitium accumulates and remains in higher 

concentrations even after reperfusion has occurred. Adenosine binds adenosine 

receptors within the sarcolemma of cardiac myocytes. There are 4 different types of 

adenosine receptor (A1, A2A, A2B and A3) each of which exist within cardiac 

myocytes. Adenosine A2 receptors are most common within the coronary arteries. The 

A1 and A3 receptors found in cardiac myocytes are involved in protecting these cells 

during periods of ischaemia preventing infarction. Adenosine is also known to suppress 

the effects of adrenaline which is increased due to sympathetic stimulation which occurs 

during myocardial ischaemia. Given these protective effects it is not surprising that 

intracoronary adenosine given during PCI for acute MI results in improved recovery of 

myocardial perfusion and also myocardial contractility with less no-reflow 

phenomenon.(71) This was also noted in the AMISTAD trial, which showed that 

adenosine administration along with thrombolysis for acute MI, resulted in a reduction 

in the size of anterior MIs.(72) 

 

It is the effect of adenosine on the A2 receptors within coronary arteries which makes it 

useful as a pharmacological stress agent. In normal coronary arteries without endothelial 

dysfunction caused by coronary artery disease an intravenous infusion of adenosine will 

lead to coronary vasodilation and an increase in coronary flow by between 2 and 3 times 

baseline flow. During an intravenous infusion this vasodilation begins around 20 to 30 

seconds after commencement and is at its maximum after 1 minute. This period of 
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maximum hyperaemia continues for the duration of the adenosine infusion which is 

mandatory as adenosine has a very short half life of less than 10 seconds.(42) The value 

of adenosine in stress testing is that it causes a disparity in flow between myocardium 

supplied by normal coronary arteries and that supplied by arteries with significant 

coronary disease. In an artery with significant coronary disease there will be little or no 

increase from baseline flow with an adenosine infusion, increasing the difference in 

flow between the 2 areas at stress. Therefore the CFR in abnormal arteries is 

significantly less than in normal arteries. During the adenosine infusion there is an 

increase in the heart rate and simultaneous drop in the blood pressure. The most 

common side effects experienced by patients are those of chest pain, breathlessness, 

flushing, headache and abdominal pain. Rarely patients may develop atrio-ventricular 

block due to the effects of adenosine on the adenosine A1 receptors within the atrio-

ventricular node. Due to the very short half life of adenosine, any symptoms quickly 

resolve on stopping the infusion. In the event of prolonged AV block, this may be 

reversed by administration of intravenous aminophylline. Adenosine is contra-indicated 

in patients with significant reversible airways disease as this may lead to bronchospasm. 

Patients taking theophylline should also avoid adenosine. Adenosine is also contra-

indicated in patients who have second or third degree heart block as there is a risk of 

developing higher degrees of prolonged atrio-ventricular block. 

 

In the case of cardiac MRI adenosine is an ideal agent as exercise testing within the 

magnetic field of the scanner is difficult. In addition, due to the time it takes to set up a 

perfusion sequence following localisers, it would be impossible to physically stress a 

patient outwith the scanner room and quickly transfer them into the room and 

commence the perfusion sequence. Some centres have developed an exercise bike fixed 

to the scanner, however, this will not be appropriate for all patients.(73) When a bolus 
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of gadolinium is administered during steady state maximum hyperaemia induced by the 

adenosine, the gadolinium will perfuse the myocardium supplied by normal coronary 

arteries faster than the myocardium supplied by abnormal coronary arteries. This 

difference in first pass delivery of gadolinium is detectable using cardiac magnetic 

resonance. 

 

An alternative to intravenous adenosine is intravenous dipyridamole, which also causes 

coronary vasodilation. Dipyridamole’s mechanism of action is by increasing levels of 

natural adenosine by preventing its re-uptake and metabolism. However it is more 

expensive than adenosine and has a longer half life. This results in longer duration of 

side effects for patients and also the need for longer monitoring.(48)  

 

New pharmacological stress agents are in the process of being developed. These have 

been designed to selectively stimulate the adenosine A2a sub-type of receptor which is 

mainly found in vascular smooth muscle cells and results in vasodilation. The closest of 

these agents to routine clinical use is regadenoson which is a selective agonist of the 

adenosine A2a receptor with a relatively low affinity. This low affinity leads to a rapid 

onset of coronary vasodilation and also a rapid termination. Regadenoson causes a dose 

dependent increase in coronary blood flow which is more sustained than that achieved 

with intravenous adenosine.(74) Pre-clinical studies have shown no evidence of AV 

block as one would expect with selective A2a receptor agonism. There has been no 

evidence of bronchoconstriction with regadenoson which is an effect mediated through 

the adenosine A2b receptor. Side effects with regadenoson have so far been infrequent, 

with the most common being chest discomfort in 4 of 34 patients and increased 

awareness of rapid heartbeat, also in 4 of 34 patients. A small number of patients also 

complained of vasodilation, dizziness, cough, nausea and shortness of breath.(75) Less 
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shortness of breath is an excellent advantage for improving image quality in magnetic 

resonance myocardial perfusion imaging as breathing during the breath hold can result 

in artefact leading to the misinterpretation of perfusion defects. Having a still image 

from a good breathold is also advantageous if semi quantitative or fully quantitative 

measurements are required as image registration can be time consuming. 

 

1.5 Caffeine 

Exogenous caffeine can inhibit the vasodilation produced by adenosine and therefore 

patients are asked to abstain from caffeine for 24 hours prior to MRMPI scanning and 

pressure wire studies in the cardiac catheterisation laboratory. Caffeine belongs to a 

family of methylxanthines which also include theophylline and theobromine. All these 

methylxanthines antagonise adenosine receptors. Caffeine is mainly consumed in 

coffee, tea, fizzy drinks and chocolate. It is also present in a common UK over the 

counter analgesic called Anadin. Theophylline is found in high concentrations in tea and 

theobromines are found in chocolate and coca cola. Following consumption of caffeine 

peak levels are found in the circulation within 15 to 45 minutes. It has a half life 

between 2 and 12 hours, depending on individual variation in activity of the cytochrome 

P450 reductase system. Drugs which interact with this enzyme system such as 

rifampicin and phenytoin reduce the half life of caffeine. An increase in half life is seen 

in patients with alcoholic liver disease and in those taking cimetidine. Caffeine 

increases heart rate and blood pressure in normal individuals and can cause 

supraventricular arrhythmias. Caffeine antagonises adenosine by 2 mechanisms; firstly 

an increase in intra-cellular cyclic adenosine monophosphate (cAMP) due to inhibition 

of phosphodiesterase and secondly competitive binding to adenosine receptors. This has 

a significant impact in reducing the level of hyperaemia achieved and thus may cause 

false negative perfusion scan results. This has been shown with both adenosine and 
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dipyridamole stress perfusion scans, mainly performed by nuclear perfusion techniques. 

In a case report from 1989 a patient developed down sloping ST depression and 

evidence of reversible ischaemia on a dipyridamole thallium nuclear perfusion scan. 

This initial scan had been done during caffeine abstinence. One week following this 

initial test the patient re-attended and had an infusion of caffeine and a repeat ECG and 

thallium scan. The ECG showed no ST depression and there was a reduction in the 

signs of ischaemia on the thallium scan. It was postulated that coffee may be 

responsible for false negative dipyridamole thallium scanning.(76) In order to quantify 

the effects of caffeine on hyperaemic blood flow 12 healthy volunteers had myocardial 

blood flow measured at rest and following intravenous dipyridamole at baseline and 

also after the consumption of caffeine. Myocardial blood flow was quantified using 

intravenous 13N-ammonia dynamic positron imaging tomography (PET). Caffeine was 

found to increase the rate pressure product at rest from 6873 to 7566, which was mainly 

due to a statistically significant increase in SBP (from 112 to 121 mmHg). Prior to 

caffeine consumption dipyridamole led to an increase in the rate pressure product by 

59%, however following caffeine consumption the increase was only 26% (p<0.05). 

The heart rate response to dipyridamole was inversely related to serum caffeine levels 

(r=0.68). Blood flow at maximum hyperaemia was 2.01ml/g/min prior to caffeine 

consumption, however following caffeine consumption this was only 1.31ml/g/min 

(p<0.001). CFR was also blunted, measuring 3.4 at baseline and 2.3 following caffeine 

consumption (p<0.001). Both hyperaemic blood flow and flow reserve were inversely 

related to caffeine dose. Caffeine reduced the hyperaemic blood flow and CFR in a dose 

dependent fashion when using dipyridamole as the stress agent. This study emphasised 

the importance of giving patients dietary advice prior to pharmacological stress 

testing.(77) A similar PET study was performed in 10 healthy volunteers using 15O-

labelled water and using ATP as well as dipyridamole as a stress agent. Patients were 
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asked to abstain from caffeine for 24 hours while a baseline evaluation of hyperaemic 

blood flow was performed and then within 2 weeks a further PET study was performed 

1½ hours after the consumption of oral caffeine at a dose of 3mg/kg. This was an 

equivalent to 2 to 3 cups of coffee. Interestingly, on this occasion myocardial blood 

flow at rest in the baseline and the caffeine groups were not significantly different. At 

baseline myocardial blood flow was significantly higher in the ATP group compared to 

those who received dipyridamole (p=0.003). The myocardial flow reserve however in 

this comparison was not statistically significantly different (p=0.07). Following caffeine 

myocardial blood flow during the ATP infusion and following dipyridamole was 

significantly lower than it had been at baseline (p<0.0001). In addition, myocardial flow 

reserve was also significantly reduced (p<0.005). The degree by which these 

hyperaemic responses was reduced was similar in both the dipyridamole and ATP 

groups further emphasising the importance of refraining from caffeine prior to nuclear 

perfusion imaging.(78) 

 

There is however some controversy in this area as 2 recent studies have failed to show 

that caffeine administration prior to tests looking for reversible myocardial ischaemia 

affects the results. The first of these studies was published in 2004.(79) In this study 10 

veterans who had clinical indications for coronary angiography and who had abstained 

from caffeine for 24 hours had a coronary pressure wire placed distal to a stenosis in 

order to measure distal coronary pressure. The FFR was recorded using the 

intracoronary administration of adenosine. Each of these patients had at least one 

stenosis of greater than 50% diameter. The FFR was recorded at baseline and then 

repeated after administration of 4mg/kg of caffeine which was injected intravenously. 

This is an equivalent to approximately 2 to 3 cups of coffee. The FFR was then repeated 

again with an intracoronary adenosine bolus. Venous blood measurements of caffeine 
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levels were made thereafter using high performance liquid chromatography. There was 

a significant increase in resting mean systolic and diastolic pressures and a significant 

increase in aortic and mean distal coronary pressures, as well as a decrease in heart rate 

at 5 minutes following the administration of caffeine compared to pressures and heart 

rate at rest. Unexpectedly intravenous caffeine did not alter the FFR in the diseased 

coronary arteries. If the caffeine did reduce maximal hyperaemia during adenosine 

infusion FFR should have increased. The authors concluded that the intravenous 

caffeine increased aortic pressure and also decreased heart rate, however there was no 

attenuation of the hyperaemic effects of intracoronary adenosine. The authors felt that 

the caffeine effect may not be relevant for adenosine stress testing as interaction 

between caffeine and adenosine is competitive and interstitial levels of adenosine are far 

greater with exogenous adenosine administration than following dipyridamole.(79) 

 

A second study was performed by a group who noted the number of perfusion scans 

being cancelled or changed to dobutamine stress testing because patients had consumed 

caffeine prior to their proposed adenosine stress SPECT scan.(80) Therefore this study 

aimed to assess the effects of an 8 ounce cup of coffee 1 hour prior to adenosine SPECT 

scanning. Thirty patients with known or high likelihood of coronary artery disease who 

had already undergone a SPECT perfusion scan and had evidence of a reversible defect 

in one or more vascular territories were recruited. A repeat SPECT scan was performed 

1 hour after an 8 ounce cup of brewed caffeinated coffee and pharmacological stress 

was repeated using intravenous adenosine. Blood caffeine levels were checked after 1 

hour of ingestion. Technetium sestamibi or tetrafosmin were the radioactive tracers 

used. A sum stress score using the 17 segment model was employed. There was no 

significant difference in the summed stress score (extent of stress perfusion defect), 

summed difference score (extent of reversible perfusion defect) or the quantitative 
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perfusion defect size with or without caffeine ingestion. No difference in perfusion 

defect size was seen with or without caffeine corrected for caffeine blood levels. No 

patients with a positive perfusion defect converted to a negative study after caffeine. 

This study concluded that an 8 ounce cup of coffee 1 hour before adenosine stress had 

no effect on the extent and severity of adenosine SPECT myocardial perfusion imaging 

reversible perfusion defects. Interestingly, 50% of these patients had caffeine levels less 

than or equal to 3mg/L. Thus a more strict conclusion is that a cup of coffee producing a 

mean caffeine level of 3.1 +/– 1.6 mg/L does not attenuate the results of adenosine 

myocardial perfusion imaging. A practical recommendation of this study was that 

having 1 cup of coffee should not be a reason to cancel an adenosine SPECT study or 

change to dobutamine stress.(80) 

 

A number of other studies have looked at the issue of abstaining from caffeine prior to 

nuclear perfusion imaging. In 1994, 86 patients underwent myocardial perfusion 

scintigraphy using thallium-201. Seventy-five of these patients had pharmacological 

stress induced by dipyridamole and 11 by intravenous adenosine. All patients abstained 

from caffeine containing products for 24 hours prior to their scan and blood was taken 

prior to initiation of adenosine or dipyridamole for serum caffeine levels. These were 

measured using an enzyme immunoassay technique. Haemodynamic parameters for 

pulse and blood pressure were measured during and following the adenosine or 

dipyridamole infusion. Detectable caffeine was found in 34 (40%) patients and the 

levels of caffeine encountered ranged between 0.1 and 5 mg/L. The decrease in mean 

SBP and the increase in mean pulse was not significantly different between those 

patients with caffeine levels greater than 1.0 mg/L and those with lower or no detectable 

caffeine levels. Results of the thallium scans were also similar in these groups.(81) A 

study on the haemodynamic effects of caffeine during adenosine myocardial perfusion 
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scans was published in 2000.(82) Seventy patients undergoing tetrafosmin myocardial 

perfusion scintigraphy were asked to abstain from caffeine for a minimum of 12 hours. 

Venous blood was collected prior to pharmacological stress and each patient was 

questioned on their drinking habits and consumption of caffeine-containing products. 

Pulse and blood pressure were monitored every 2 minutes during an adenosine infusion 

of 140µg/kg/min for 6 minutes. Symptoms were recorded and patients were categorised 

into 4 groups depending on the severity of their symptoms. Caffeine levels were 

measured using high performance liquid chromatography. Fifty two (74%) patients had 

a measurable serum caffeine level. Thirty five patients (50%) had levels ≤1mg/L and 

greater than 0mg/L. No correlation was found between tea or coffee drinking habits and 

a measured serum caffeine level. No correlation was found between serum caffeine 

levels and maximum change in pulse, SBP or DBP. In addition, no difference was seen 

in mean maximum change in pulse, SBP or DBP between those patients with caffeine 

levels less than 2.9mg/L and those with levels ≥2.9mg/L. The mean pulse rate increase 

in the group with caffeine levels ≥2.9mg/L was 29.9 beats per minute, compared to 19.9 

beats per minute in those with levels less than 2.9mg/L. The difference in SBP was -

11.25mmHg in the high caffeine group, compared to -17.27mmHg in the low caffeine 

group. The difference in DBP was -5.1mmHg in the high caffeine group, compared to -

6.8mmHg in the low group. A significant difference in the occurrence of symptoms 

with the adenosine infusion was found between the group with low caffeine levels (less 

than 2.9mg/L) and those with high caffeine levels (≥2.9mg/L). In the high caffeine 

group 6 patients (75%) had no symptoms, compared to 20 of the 62 patients in the low 

caffeine group (32%), which was statistically significant (p=0.04). Unfortunately the 

number of patients in the high caffeine group was low, which is a limitation of this 

study. No analysis of perfusion imaging was performed in this study, however the 

authors concluded that in view of the symptoms experienced by patients a 12 hour 
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abstention from caffeine containing products may be insufficient and could potentially 

lead to false negative myocardial perfusion scans. The authors of this study propose a 

24 hour abstention may be safer for the purpose of myocardial perfusion imaging.(82) 

The caffeine level at which adenosine induced vasodilation is inhibited varies in the 

current literature. Smits et al, 1990 demonstrated that a caffeine plasma level of 2.3 to 

5.5mg/L inhibited vasodilation.(83)  Bottcher et al, 1995 noted a reduction in 

hyperaemic blood flow and flow reserve at serum caffeine levels less than 8µg/L.(77) 

 

A study of serum caffeine levels after 24 hours of abstention was published in the 

Journal of Nuclear Medicine Technology in 2002.(84) In this study 36 patients were 

recruited and had blood taken for caffeine levels measured by high performance liquid 

chromatography prior to stress with dipyridamole at a dose of 0.56mg/kg over 3½ 

minutes. During this time blood pressure and heart rate were recorded at 0 and 4 

minutes. Sixty six percent of patients had detectable caffeine levels in the range of 0.1 

to 0.8mg/L. There was no statistically significant change in the average DBP and SBP 

after the dipyridamole infusion and there was no correlation between measured serum 

caffeine levels and blood pressure. Heart rate increase was inversely correlated with 

serum caffeine levels, however the r value was only -0.22 and p=0.19. Interestingly in 

this study all patients had levels of caffeine less than 0.8 mg/L. This is a higher 

proportion than that noted in the aforementioned study by Jacobson et al. This study 

concluded that as the caffeine levels were all less than 1mg/L a 24 hour period of 

abstention from caffeine containing products should be sufficient for pharmacological 

stress testing.(84) A potential solution to the problem of caffeine in adenosine stress 

testing has been developed by Hurwitz et al in 1999. An adenosine challenge and boost 

protocol was used, whereby patients who had consumed caffeine within 24 hours of 

stress testing had a 6mg bolus of adenosine given and if there was a physiological 
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response the patient could go ahead and have this stress test performed. This was known 

as the adenosine challenge test. In patients, during a pharmacological stress test, who 

don’t exhibit any symptoms a similar bolus of 6mg can be given to help validate the 

test. In this study 98 patients received the challenge test as they had inadvertently 

ingested caffeine prior to their perfusion scan. Using the challenge test 96% of these 

patients were able to proceed and have the standard stress infusion. Fifteen patients 

received an adenosine boost due to a lack of symptoms, of whom 14 were felt to have 

had a valid result of their nuclear perfusion scan. The authors conclude that these 2 

protocols were useful and cost efficient adjuncts to pharmacological stress testing in the 

setting of myocardial perfusion imaging. This was felt to preserve health care resources 

and ensured more patients undergo appropriate stress testing.(85) In the UK, to our 

knowledge, this protocol has not been adopted by many centres. Interestingly recent 

research has closed the debate of whether long term habitual coffee consumption is 

associated with an increased risk of coronary heart disease. A prospective cohort study 

of 44005 men and 84488 women has concluded that there is no evidence that coffee 

consumption increases the risk of coronary heart disease.(86) 

 

In the present research project we plan to examine the haemodynamic effects of 

adenosine during first pass magnetic resonance myocardial perfusion imaging and also 

assess the symptoms produced. Caffeine levels will also be recorded and correlated with 

symptoms and haemodynamic response. This has not previously been looked at in the 

setting of magnetic resonance myocardial perfusion imaging (MRMPI). 

 

1.6 Late Gadolinium Enhancement Following PCI and CABG 

Gadolinium is an extra cellular T1 enhancing contrast agent that is commonly used in 

contrast enhanced MRI examinations and is not specific to the heart. It has 7 unpaired 
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electrons and a large magnetic moment and when placed in a magnetic field the T1 

relaxation time of hydrogen ions and water are reduced producing high signal intensity 

on T1 weighted images. Gadolinium is a rare earth metal and is present in the 

composition of most clinically approved contrast agents. It is included in ionic 

complexes with a chelation compound, such as diethylenetriaminepentaacetic acid as it 

cannot be excreted by the body in its unbound form. During first pass myocardial 

perfusion imaging the gadolinium perfuses into the interstitium of the myocardium in a 

rapid homogenous fashion in segments supplied by normal coronary arteries. Three 

minutes after gadolinium injection, late gadolinium enhancement images can be 

obtained. During this time an equilibrium exists between the blood and interstitium. If 

there has been any myocyte damage as in the case of myocardial necrosis following a 

MI, gadolinium can enter the intracellular space providing a differential enhancement. 

Over a period of several minutes the gadolinium which has penetrated the intracellular 

space will diffuse back into the blood pool and is eventually excreted by the kidneys. 

Whilst the gadolinium is present within the intracellular area of damaged cardiac 

myocytes, imaging can be performed in order to delineate abnormal from normal 

myocardium. Unfortunately scar tissue and viable myocardium do not have different T1 

or T2 relaxation times and therefore it is essential to administer a freely diffusible 

contrast agent. In the initial phase after cell death enhancement is thought to be due to 

an increase in distribution volume, whereas in the chronic setting there is an increase in 

the interstitial space due to cell loss and scar formation. In a canine model the pattern of 

gadolinium enhancement accurately reflects infarct size as measured by 

triphenyltetrazolium chloride (TTC) staining on histology.(87;88) Bearing in mind that 

magnetic resonance imaging has very high spatial resolution, we can accurately measure 

the volume and transmurality of late gadolinium enhancement which reflects scar tissue 

which is useful in the clinical setting in determining which patients have viable 
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myocardium and therefore a probability of functional recovery following 

revascularisation. Greater than 50% transmurality of late gadolinium enhancement is 

one cut-off used to identify potentially irreversible myocardial dysfunction.(89) Late 

gadolinium enhancement is specific for myocardial damage, however this may not 

necessarily be due to coronary artery disease as it can also be caused by hypertrophic 

cardiomyopathy, infiltrative conditions such as cardiac sarcoidosis, arrhythmogenic 

right ventricular dysplasia, and myopericarditis. Gadolinium at a dose of 0.1 to 

0.2mmol/kg is used for this type of imaging. Following a few minutes the dose of 

gadolinium in the blood pool should have dropped significantly to allow for late 

gadolinium enhancement imaging. During the period when the dose of gadolinium in 

the blood pool is high imaging can be performed to look for microvascular obstruction. 

These are areas of hypo-enhancement which commonly occur after an acute MI. In 

order to detect late gadolinium enhancement it is essential to null normal myocardium 

so that this appears black and that areas of myocardial necrosis appear bright. This is 

done using an optimal pre-pulse delay by applying a 2D inversion recovery sequence 

with differing inversion times selecting the one which provides the best suppression of 

normal myocardium. This is performed in both long and short axis planes covering the 

entire left ventricle. 

 

Gadolinium can cause some mild side effects, including nausea, vomiting, mild 

headache, rash and GI upset. Mild hypotension and a slight increase in bilirubin and 

blood iron has also been reported. Contra-indications to the administration of 

gadolinium include haematological disorders, such as haemolytic anaemia and sickle 

cell anaemia. Pregnancy is also a contra-indication. More recently renal failure with an 

estimated glomerular filtration rate of less than 30 ml/min/1.73m2 have been accepted as 

a contraindication following reports of nephrogenic systemic fibrosis (NSF). 
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In recent years there has been some interest in the use of late gadolinium enhancement 

following coronary revascularisation by either PCI or CABG. Minor elevations in 

creatinine kinase (CK) MB isoenzyme following PCI is a common finding.(90-92) A 

previous study in 2001 has shown that CK-MB elevation following stent placement is a 

result of myocardial necrosis.(93) Choi et al aimed to assess if impaired or declining 

tissue level perfusion measured using the TIMI myocardial perfusion grade was 

associated with any degree of myocardial necrosis using the late gadolinium 

enhancement technique.(94) The study recruited 14 patients who had gadolinium 

enhanced MRI performed soon after successful elective PCI. Nine patients (64%) had 

elevated CK-MB levels. The remaining 5 patients served as controls with no release of 

CK-MB. Late gadolinium enhancement images were performed after 0.1mmol/kg of 

gadolinium and wall motion and contrast enhancement were assessed by 2 observers. 

The coronary angiograms were analysed offline and TIMI flow grade was recorded 

along with TIMI myocardial perfusion grade (TMPG). All patients had TIMI 3 flow 

before and after stent deployment and had no angiographic evidence of acute vessel 

closure or distal embolisation. No major side branches were occluded in addition. The 

median CK-MB was 21ng/ml in those patients with elevated CK-MB. Each of these 

patients had evidence of hyper-enhancement by CMRI within the target vessel perfusion 

territory. Three patients with minor side branch occlusion had late gadolinium 

enhancement adjacent to the implanted stent and the remaining 6 patients had late 

gadolinium enhancement further down stream in the myocardium supplied by the 

stented artery. A TMPG score of ≤1 indicating minimal dye entry into the myocardium 

or minor side branch occlusion was significantly higher in the group with elevated CK-

MB levels (p=0.02). A reduction in TMPG score was seen in 5 patients within the 

elevated CK-MB group whom had significantly greater CK-MB elevations and larger 
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mass of late gadolinium enhancement. Reduction in TMPG score was noted in those 

patients with the most extensive myonecrosis with CKMB levels greater than 3 times 

normal and a hyperenhancement mass greater than 3 grams (p=0.03). This study 

provides an understanding of the mechanism of myonecrosis following stenting as a 

decline in the TIMI myocardial perfusion grade score indicates the presence of 

microvascular obstruction.(94) This may be clinically relevant as microvascular 

obstruction in the setting of an acute MI is associated with increased mortality 

independent of the restoration of TIMI grade 3 blood flow down the coronary artery. It 

has been postulated that disruption of the fibrous cap of coronary atheroma can lead to 

platelet emboli. The contents of an atheromatus plaque, including lipids, matrix, 

endothelial cells and platelets can embolise down a vessel and cause obstruction of the 

microvasculature. In 2004 a study was published in the European Heart Journal looking 

at peri-operative MI in patients undergoing coronary artery bypass surgery.(95) This 

again was performed using contrast enhanced magnetic resonance imaging. A number 

of previous studies had shown that coronary artery bypass was associated with an 

elevation in cardiac enzymes.(96-98) Following bypass surgery elevated CK-MB is 

associated with a risk of long term mortality.(99) It was uncertain whether elevated 

cardiac enzymes were due to surgical trauma, ischaemia due to inadequate 

revascularisation or graft occlusion causing infarction. From an original group of 60 

patients, there were 23 with no previous history of MI and normal pre-operative ECG 

and left ventricular function. All patients underwent on pump CABG and patients were 

selected for the study on the basis of day 1 post-operative CK-MB concentrations. 

Patients were selected in order to have a scattering of levels. After including 15 patients 

with a CK-MB <20µg/L, patients were thereafter only selected if their CK-MB was 

≥20µg/L. Plasma CK-MB and troponin I levels were measured at days 1, 2 and 4 and 

cardiac MRI was performed between days 4 and 9 post-operatively. A gadolinium dose 
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of 0.2mmol/kg was used in order to detect late gadolinium enhancement. Evidence of 

MI was found in 18/23 (78%) patients. The median mass of necrosis was 4.4 grams. A 

moderate correlation was found between CK-MB and infarct mass on day 1 post-CABG 

(r=0.54, p<0.01). There were also correlations between troponin I levels and infarct 

mass with the r values varying between 0.46 and 0.53 when measured on days 1, 2 and 

4 and for troponin T, r values varied between 0.38 and 0.5 for the same time intervals. 

The authors conclude that peri-operative elevations in CK-MB, troponin I and troponin 

T correspond with peri-operative MI. This corresponded to a consensus report 

suggesting increases in CK-MB to 5 times above the upper limit led to peri-procedural 

myocardial injury.(100) One of the limitations of this study was that no dedicated 

cardiac coil was used and the images acquired were only in 2 dimensions. This may 

have underestimated infarct sizes. However, despite this, good inter-observer agreement 

was achieved between the 2 radiologists. Another important consideration is that of 

infarction of the right ventricle which is not reliably detected unless right ventricular 

hypertrophy is present. This study did not examine infarctions of the right ventricle.(95) 

 

A number of studies have shown evidence of myocardial injury following PCI by 

measuring levels of troponin T, troponin I and CK-MB.(101-104) Selvanayagam et al in 

2005 examined troponin elevations following PCI and also performed late gadolinium 

enhancement MRI imaging to measure the extent of myocardial necrosis.(105) Fifty 

patients were included in a study who were either due to have: 2 vessel PCI; insertion of 

greater than 30mm of stent to a single vessel; or planned treatment involving a side 

branch of greater than 2mm diameter. MRI imaging was performed within 24 hours of 

PCI and 24 hours post procedure. Twenty four patients had a third MRI 7 to 8 months 

post PCI. All patients received aspirin, clopidogrel, heparin and intravenous abciximab. 

Cardiac magnetic resonance (CMR) images were analysed off-line by a single observer 
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and areas of late gadolinium enhancement were quantified using computer assisted 

planimetry. Troponin I levels were measured before and at 24 hours post-PCI. CMR and 

troponin results were available for 48 of the 50 patients recruited. The average stent 

length was 24mm +/- 13mms and the average lesion length was 15mms +/- 6mms. Post 

PCI, 14 patients had evidence of new late gadolinium enhancement (29%) with a mean 

mass of 6.0 +/- 5.8grams. Each of these patients had raised troponin levels. In 6 of the 

14 patients (43%) with new late gadolinium enhancement this was located adjacent to 

the stent indicative of side branch occlusion and in the remaining 8 (57%) this was 

located in the apical myocardium distal to the stent. All 14 patients with late gadolinium 

enhancement had troponin elevations with a mean of 3.7 +/- 3.0µg/l. A strong 

correlation existed between the increased troponin I measurements at 24 hours and the 

mean mass of new late gadolinium enhancement (r=0.84 at 24 hours and r=0.71 after 

late scanning). Eleven patients who had post PCI troponin elevation and late gadolinium 

enhancement underwent a repeat scan at a median of 240 days post PCI. There was a 

strong trend for the mass of late gadolinium enhancement to decrease from 5.4 +/- 

4.8grams in the acute post PCI scan to 3.8 +/- 5.0 grams in a later scan (p=0.07). There 

were no changes in the control group who had no new late gadolinium enhancement 

post PCI. Stent length was significantly associated with post-PCI late gadolinium 

enhancement (p=0.04). However, interestingly lesion length was not associated with 

new late gadolinium enhancement. In conclusion, 30% of patients developed 

irreversible myocardial injury following complex PCI. The magnitude of late 

gadolinium enhancement correlated well with the magnitude of troponin I elevation. 

These events occurred despite optimal use of anti-platelet therapy including abciximab 

and heparin.(105) A similar study was performed by the same group from Oxford, 

England in 2006.(106) Fifty-two patients had PCI performed, however on this occasion 

an intravascular ultrasound examination (IVUS) was performed on each of the arteries 
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studied. CMR was performed pre and 24 hours post PCI as in the previous study and the 

pattern of late gadolinium enhancement was defined as being distal or adjacent. 

Angiograms were analysed for TIMI myocardial perfusion grade and TIMI corrected 

frame count. Fifteen coronary territories (23%) had evidence of new late gadolinium 

enhancement on the post PCI scan. Eight of these (53%) demonstrated distal late 

gadolinium enhancement and 47% had adjacent late gadolinium enhancement. There 

was no difference in the mean mass of late gadolinium enhancement between the 2 

distributions of necrosis with a mean mass of 7.6 +/- 6.2 grams (p=0.6). There was a 

greater reduction in plaque volume in a distal late gadolinium enhancement group 

compared to those patients with adjacent late gadolinium enhancement or no new late 

gadolinium enhancement (p<0.001). A significant correlation was reported between 

change in plaque volume post PCI and the mass of new late gadolinium enhancement 

(p<0.001). Closed microvasculature after PCI predicted recurrence of new late 

gadolinium enhancement with an odds ratio of 8.0 (95% confidence intervals were 1.4 

to 46.1 and p=0.02). Side branch occlusion had an odds ratio of 16.2 (95% confidence 

interval was 2.6 to 102.5, p=0.03) for occurrence of new late gadolinium enhancement. 

This study suggested that impaired flow in the side branches of coronary arteries and 

distal embolisation of plaque material contribute to myocardial necrosis found during 

PCI. Side branch occlusion was associated with adjacent myocardial necrosis to the 

implanted stent, whereas distal necrosis was a result of embolisation of atheromatous 

plaque. Interestingly the volume of embolised material was directly proportional to the 

measured amount of late gadolinium enhancement indicative of myocardial necrosis. 

The relevance of this new late gadolinium enhancement was highlighted in a study by 

Kwong et al Circulation 2006 where small areas of late gadolinium enhancement (1.4% 

of LV mass) noted in patients without previous MI led to a greater than 7 fold increase 

risk of major cardiovascular events, possibly as a result of increased substrate to life 
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threatening arrhythmia and also the greater associated burden of atherosclerosis.(107) 

This may be clinically relevant bearing in mind greater than 900,000 procedures are 

performed annually in North America.(108) In addition, increasing numbers of 

percutaneous coronary procedures are being performed in the United Kingdom with a 

reduction in the incidence of coronary artery bypass surgery. 

 

Selvanayagam et al, with a similar study population, went on to look at myocardial 

perfusion reserve index following PCI.(109) In this study 40 patients had pre-PCI and 

24 hour post-PCI late gadolinium enhancement imaging and first pass myocardial 

perfusion imaging at rest and stress. These patients had either 1 or 2 vessel coronary 

disease scheduled for complex PCI with insertion of greater than 30mm of stent to a 

single vessel or treatment involved at least 1 major side branch or 2 vessel PCI. 

Myocardial blood flow was determined using deconvolution of the signal intensity over 

time curves with the blood pool AIF. The myocardial perfusion reserve index (MPRI) 

was calculated as a ratio of hyperaemic to resting myocardial blood flow. Twenty one 

patients (53%) had evidence of new distal late gadolinium enhancement post-PCI. The 

MPRI in these segments of late gadolinium enhancement measured 2.16 pre-PCI and 

2.00 post-PCI (p<0.001). The mean MPRI in those segments without new late 

gadolinium enhancement significantly increased post procedure from 2.06 to a mean of 

2.52 post-PCI (p<0.001). There was a significant increase in myocardial blood flow in 

those areas with late gadolinium enhancement late after PCI compared to 24 hour post 

PCI (p=0.03). This study showed that in segments of new late gadolinium enhancement 

post PCI there is a transient reduction in myocardial perfusion reserve index at 24 hours, 

which improves by 6 months. The study also showed that a reduction in MPRI is 

confined to the segments of myocardial injury and doesn’t affect the entire area of 

myocardium supplied by the vessel which underwent PCI. It is thought that the 
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reduction in hyperaemic flow at 24 hours post-PCI is due to myocardial necrosis and 

extensive macrovascular and microvascular plugging of the distal vascular bed.(109) 

 

In our current study we have looked at the presence of late gadolinium enhancement pre 

and post-PCI and CABG. In those patients who had PCI performed troponin I 

measurements were made at 12 hours post procedure and correlated with mass of late 

gadolinium enhancement measured at 24 hours and 4 weeks. Myocardial perfusion 

reserve index (MPRI) measurements have also been made from the MRMPI scans in the 

PCI group prior to, at 24 hours and at 4 weeks following PCI and in the coronary artery 

bypass group prior to surgery and at 4 weeks post surgery. 
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2 Research Aims 

The main aim of this research is to determine the true sensitivity, specificity, positive 

and negative predictive values of qualitative and semi-quantitative magnetic resonance 

myocardial perfusion imaging (MRMPI) for the diagnosis of haemodynamically 

significant coronary disease as defined by FFR. 

 

Measure the inter-observer variability in the qualitative assessment of MRMPI and the 

semiquantitive measurement of MPRI. 

 

Determine if false positive MRMPI scans are due to microvascular coronary disease as 

assessed by CFR and IMR and if MRMPI can detect isolated microvascular disease. 

 

Determine the rate of occurrence of troponin release post-PCI and compare this with the 

development of new late gadolinium enhancement (LGE). 

 

Assess the frequency and extent of new LGE following PCI and CABG. 

 

Investigate the symptomatic and haemodynamic effects of intravenous adenosine on 

patients during perfusion imaging and the influence serum caffeine levels has on these 

parameters. 
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3 Methods 

3.1 Patients 

We recruited 103 patients between November 2004 and April 2006. All patients had 

chest pain suspected to be angina with initial investigations leading to them being 

referred for coronary angiography +/- PCI. A flow diagram of the course of the study is 

shown on Figure 3.1. We recruited all patients aged between 18 and 80 with chest pain 

referred for angiography for standard clinical indications to one consultant cardiologist 

and in whom we were able to obtain fully informed written consent. Exclusion criteria 

included patients who had suffered a MI with evidence of ongoing ischaemia in the 48 

hours preceding the study; pregnancy and atrial fibrillation. Standard contraindications 

to MRI were also excluded including pacemakers, cochlear implants, certain metal 

surgical prostheses, certain aneurysm and vascular clips, metal intraocular foreign 

bodies and certain prosthetic heart valves. Patients with contraindications to the use of 

adenosine which was the agent employed to induce maximal hyperaemia during both 

perfusion imaging and pressure wire studies were excluded including asthma, 2nd or 3rd 

degree atrio-ventricular block, sick sinus syndrome and patients taking dipyridamole. 

Patients with contraindications to gadolinium such as sickle cell and haemolytic 

anaemia were also excluded. During the course of this research study concern arose 

regarding the safety of gadolinium compounds in patients who suffer from renal failure 

with cases of nephrogenic systemic fibrosis (NSF) being reported. Thus, gadolinium is 

no longer administered to patients with an estimated glomerular filtration rate of 

<30ml/min/1.73m2.(110-114) 
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Figure 3.1 - Study Flow Chart and Design 

 

103 Consecutive Patients Being Investigated with 
Suspected Cardiac Chest Pain 

 
 

MRMPI Scan 
 
 

Coronary Angiography with Measurement 
of FFR / CFR in Each Coronary Artery 

(Within 7 Days) 
 
 
Stenoses with FFR<0.75     FFR>0.75 in all vessels 
      Suitable for PCI   
 
 

     PCI   Stenoses with FFR<0.75       Medical Therapy 
         Suitable for CABG                 No Repeat MRMPI 
    or Medical Therapy Only 
 
      Repeat FFR / CFR   
              MRMPI Scan 
           (CABG - 4 weeks) 
           MRMPI Scan             (Medical Therapy – 3 months) 
      (Within 24 hours) 
 
 
    MRI Perfusion Scan 
     (4 weeks post PCI) 

 
 

Patients selected for entry into the study would initially attend for an MRMPI scan. At 

this time a risk factor profile for coronary disease was obtained as well as weight and 

height measurements and a Canadian Cardiovascular Study angina grade was 

determined. A venous blood sample was taken for a biochemical and haematological 

profile including urea and electrolytes, liver function tests, random glucose and lipids, 

full blood count and coagulation screen. An MRMPI scan was then performed as 

documented in section 3.2. Within one week in the majority of cases the patients would 

then have a diagnostic coronary angiogram with fractional and CFR measurements and 
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the index of microcirculatory resistance made in each of the coronary arteries, excluding 

small non-dominant vessels. The details of this are contained in section 3.3. Those 

arteries with evidence of significant coronary artery disease would then go on to have 

PCI performed if this was felt to be both feasible and if bypass surgery was not 

indicated. PCI would be performed using standard techniques and following stent 

deployment further invasive haemodynamic measurements would be made (FFR and 

CFR) ensuring that the post-PCI FFR is greater than 0.9. Those patients who had PCI 

performed were invited to return for a repeat MPMRI scan at both 24 hours and 4 weeks 

following the procedure. Prior to the 24 hour scan venous blood was taken for a 

troponin I level and urea and electrolytes. The same scanning protocol was adhered to 

for each of the scans. Patients who were found to have significant multi-vessel coronary 

artery disease or left main stem disease which was felt to be best managed by coronary 

artery bypass surgery (CABG) were referred to a cardiothoracic surgeon. Following 

CABG patients were invited to return for a MRMPI scan at 4 weeks. Patients who were 

found to have significant coronary artery disease but were managed medically were 

invited to return for repeat scanning at 3 months following their coronary angiogram. 

Those patients with no significant coronary artery disease took no further part in the 

study. At the time of each MRMPI scan, CCS angina grade was recorded and a note of 

medication taken. A 12 lead ECG was also taken to ensure there was no high degree of 

AV block prior to MRMPI scanning and adenosine stress. 

 

3.2 First Pass Magnetic Resonance Myocardial Perfusion Imaging (MRMPI) 

In the week preceding the MRMPI scan patients were sent details of which caffeinated 

products to avoid prior to the scan and also their coronary angiogram (See appendix 

8.1). Prior to scanning a MRI safety checklist was completed for each patient. Two 18G 

venous cannulae were inserted (one into each antecubital fossa). ECG electrodes were 
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positioned to achieve the best possible signal within the magnetic field of the scanner 

and a blood pressure cuff was secured to the non-adenosine arm. Scanning was 

performed using a Siemens Sonata 1.5T (Erlangen, Germany) scanner using a six 

channel anterior chest coil and spinal coils within the gantry table. Following the 

acquisition of localising images and a HASTE block of the thorax we obtained long and 

short axis cine images using a retrospectively gated TrueFISP sequence. Details of the 

scanning sequences used are documented in Appendix 8.2. The short axis cine scans 

were used to determine left ventricular mass, volume and function. Patients were then 

stressed using intravenous adenosine (140mcg/kg/min) which ran for 2 minutes prior to 

acquisition of stress perfusion images. Appendix 8.3 shows the infusion rate chart used 

for the study. A bolus of contrast medium, gadolinium-diethylenetriamine pentaacetic 

acid bismethylamide (Omniscan, Amersham Health, Oslo, Norway), was then injected 

at a rate of 5ml/sec using a power injector (Medrad, Pittsburgh, PA). The gadolinium 

dose used was 0.1mmol/kg. The three short axis slices were imaged during the first pass 

of the bolus of gadolinium using a TurboFLASH sequence (TE 0.99; TR 173; TI 90; 

Flip Angle 8o; Slice Thickness 8mm; Slices 3; FOV 213x340; Matrix 80x128; Spatial 

Resolution 2.7x2.7mm2; Bandwidth 780Hz/pixel). This pulse sequence was chosen as 

we had previous experience in its use and was able to get 3 slices per R-R interval in all 

patients. The turboFLASH sequence also produces excellent myocardial contrast during 

the first pass and has been used in many previous studies especially those using the 

same make of scanner (table 1.2). The three slices were chosen in order to include a 

section of the basal, mid and apical LV and therefore covering 16 of the 17 segements 

of the AHA coronary arterial territory model.(10) This pulse sequence was only slightly 

modified from that provided with the Siemens Sonata scanner in order to create a square 

pixel as opposed to a rectangular pixel. This allowed acquisition of three slices within 

519ms and comfortably within a single R-R interval in all patients. Heart rate and blood 



 81

pressure were recorded prior to adenosine stress, during peak stress and 2 minutes 

following termination of the adenosine infusion (Schiller, Switzerland), in order to 

determine if patients were adequately stressed. Following the first pass, early 

gadolinium enhancement images were obtained using a segmented TrueFISP sequence 

looking for evidence of microvascular obstruction up to 5 mins following the bolus. We 

then collected a series of images during end-expiratory breathold in both the long and 

short axis planes looking for late gadolinium enhancement using a turboFLASH 

sequence. An inversion time of 320msecs was initially chosen for the vertical long axis 

slice and depending on the degree of myocardial nulling this figure was altered 

accordingly. Once twenty minutes had elapsed since the initial bolus of gadolinium, we 

repeated the first pass perfusion sequence at rest using a further bolus of gadolinium 

(0.1mmol/kg). 

 

3.2.1 Qualitative Analysis of MRMPI Scans 

The perfusion imaging analysis was performed by two blinded observers. The 

oberservers had received extensive training at different centres (Royal Brompton 

Hospital, London and St. Joseph’s Hospital, Atlanta) and were experienced in the 

qualitative analysis of clinical and research MRMPI scans with approximately 2 years 

experience. Both observers viewed the three stress and rest slices simultaneously using 

a commercially available viewing package (CMR tools, Imperial College, London). In 

order to ensure that the observers were blinded to patient identity details, patient name 

was omitted from the casing and replaced by a number following the completion of the 

scan. In addition the scans were loaded onto the viewing software by an independent 

party and the patient’s name and date of birth was removed prior to analysis of the scan. 

Both observers scored each of the 16 AHA segments as normal perfusion or 

hypoperfusion and then decided if they felt the patients were likely to have one, two or 
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three vessel coronary artery disease or had normal coronary perfusion. Dark rim 

artefacts were identified if they occurred at the interface between the LV blood pool and 

the endocardium typically affecting the interventricular septum and lateral walls. These 

artefacts tended to be one pixel in diameter and commonly when the LV blood pool 

reached its peak signal intensity and lasting less than 5 cardiac cycles. We viewed the 

stress and rest scans together which aided the identification of these artefacts and they 

tend to occur at both states. Coronary artery territories were scored as per the AHA 

model shown in Figure 3.2. If there was disagreement between observers then a third 

observer was used to adjudicate. 

 

Figure 3.2 - Coronary Artery Territory Model(10) 

 

3.2.2 Myocardial Perfusion Reserve Index (MPRI) 

Semi-quantitative measurements of MPRI were made using three different methods. 

Each of these methods used data from the signal intensity time curve of the different 

sectors of left ventricular myocardium as defined by Cerqueria in 2002.(10) The 

software used for this analysis was developed by Dr Murdoch Norton, Department of 

Physics, University of Aberdeen at Aberdeen Royal Infirmary. There are few 

commercially available software packages for this purpose, none are widely used and 
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they all have technical problems. Our program is relatively simple to use and 

incorporates all the steps of analysis that would be provided by a commercial software 

package. 

 

To begin the analysis the program searches through the scan file and highlights the 

sequence DICOM headers from which we select the stress perfusion sequence. This 

scan is then viewed as a movie. Movements due to breathing and cardiac motion are 

then aligned such that the left ventricular images in each of the 50 images per slice are 

precisely aligned on top of one another. This process is performed by a program called 

ImageJ which is a Java based image processing program widely used in radiological 

studies which use DICOM files.(115) For extreme movements which are not corrected 

for by ImageJ manual correction is then performed image by image by the observer. If a 

good breath hold has been achieved this is not too time consuming for resting images 

however it is usually worse for the stress images where patients feel short of breath due 

to the adenosine infusion. Once all the images (50 images for each of the 3 slices of 

myocardium) are aligned we then manually select a single subendocardial region of 

interest around the left ventricle starting at the right ventricular insertion point with the 

left ventricle for each of the three slices. Using a computer mouse the operator would 

draw a freehand region of interest excluding the border between the LV blood pool and 

the endocardium where artefact is common. This region of interest would be confined to 

the subendocardium and no sub-epicardial contour was drawn. An example of the 

analysis screen at this point is shown in figure 3.3. The program would then divide the 

basal and mid LV slices into 6 myocardial segments and the apical slice into 4 slices as 

shown in the coronary artery territory model (Figure 3.2). The average signal intensity 

for the pixels within each of the myocardial segments is calculated for all 50 images 

which is plotted to give signal intensity / time curves for each myocardial segment so 
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that we have 16 stress curves. The baseline signal intensity of the myocardium at both 

stress and rest prior to the gadolinium bolus is recorded and subtracted from the signal 

intensity / time curves in order that the curves start with a signal intensity of zero units. 

Figure 3.4 provides an example of a normal signal intensity curve for a myocardial 

segment compared to figure 3.4 which is an example of a segment with significant 

coronary disease. 

 

Figure 3.3 – Perfusion analysis software showing the selected subendocardial region of 

interest. 
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Figure 3.4 - Signal intensity v time curve of a myocardial segment supplied by a 

physiologically normal coronary artery (FFR=0.98, CFR=4.7). The signal intensity is 

plotted on the y axis and image number is plotted on the x axis which is a function of 

time. The red line shows the brisk up slope of the gadolinium as it perfuses the 

myocardium and then washes out. 

 

 

Figure 3.5 - Signal intensity v time curve of a myocardial segment supplied a 

physiologically abnormal coronary artery (FFR=0.56, CFR=1.4).The red line takes 

longer to reach its peak and does not achieve as high a signal intensity as the normal 

segment in figure 3.4. 

 

 

This process is then repeated for the rest images to give our 16 rest curves and the data 

saved for analysis. A signal intensity / time curve is also obtained at stress and rest for 

the LV blood pool which provides our AIF. An example of the signal intensity v time 

curve for the AIF is provided in figure 3.6. The analysis of these curves is then 

performed by IDL (Interactive Data Language) which is a software program commonly 

used for processing large amounts of image data using a unique data analysis language. 
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We start the analysis with the stress curves. The first method of calculating MPRI we 

performed was the measurement of the upslope of the signal intensity curve as the 

gadolinium perfuses through the myocardium. This is performed by manually selecting 

the base and peak points of the upslope from which the program looks for the maximum 

upward gradient in the selected data region. These data are then stored for each of the 

myocardial segments and for each slice. The maximum signal intensity of the 

gadolinium bolus within the myocardial segments is then selected and again these data 

are stored.  

 

Figure 3.6 - Signal intensity v time curve of the AIF. Note the curve is clipped at its 

peak due to the dose of gadolinium being too high for the range of pixel intensities of 

the scanner. 

 

 

The Fermi method is a more automated process which the IDL program performs with 

very little observer interaction. The Fermi method assumes that if we convolve the 

function describing the delivery of the gadolinium i.e. the AIF, with a Fermi function, 

we will generate a response function which looks like the time course of the signal 

obtained from a region of myocardium.(116) The correct Fermi function is identified 

which generates the actual myocardial signal time course. The analysis program then 

generates multiple Fermi functions and convolves them with the measured AIF to find 

which best fits the signal uptake curve for each of the myocardial segments. This is 

performed using a non linear method of least squares fitting. The defining parameters of 



 87

the best fitting Fermi function provide the expected flow to that myocardial segment. 

The principal benefit of the Fermi method is that it uses all the measured data 

maximising the amount of information experimentally measured from the study. It also 

takes into account the bolus variation (AIF) in different studies. 

 

This entire process is then repeated for the rest signal intensity / time curves. The 

program then automatically divides the stress values for all three methods by the rest 

values for each of the myocardial segments per scan. This provides MPRI values for 16 

segments per scan by the three methods. Therefore 48 data points are collected per scan. 

Two observers analysed each of the scans in the study. For analysis of this data the 

mean MPRI value was calculated for each of the coronary arteries by dividing the sum 

of MPRI’s for all the segments within the coronary territory by the total number of 

segments as defined by the AHA model.(10) We also used the lowest MPRI value 

within each of the coronary territories in the statistical analysis. This process was 

repeated by both observers for the three different methods of calculating MPRI. A 

schematic of the functions of this analysis program is highlighted in figure 3.7. In the 

final analysis the data for each territory was averaged between observers to provide an 

overall mean MPRI. The MPRI data by each observer was compared to assess 

interobserver variability using Bland-Altman plots. 
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Figure 3.7 - Schematic of MPRI analysis software functions 

 

Searches scan file for dicom headers 
↓ 

Manually select stress perfusion sequence 
↓ 

Motion correction (Image J) 
↓ 

Manually draw subendocardial region of interest for 3 slices 
↓ 

LV divided in AHA coronary artery segments 
↓ 

Signal intensity / time curves drawn automatically for all segments 
↓ 

Baseline (Pre-Gadolinium) signal intensity of myocardium subtracted from curves 
↓ 

Signal intensity / time curve for AIF generated automatically 
↓ 

Above steps repeated for rest scan 
↓ 

Signal intensity / time curve data exported into IDL program for analysis 
↓ 

Manually select base and peak of one segments signal intensity / time curve 
↓ 

Program automatically selects base and peak of other curves 
↓ 

Upslope gradient and peak signal intensity data stored 
↓ 

Automated Fermi method of analysis 
↓ 

Repeat above steps at rest 
↓ 

Stress and rest data divided to provide MPRI values for all segments 
 
 

3.2.3 Left Ventricular Mass and Volume Analysis 

LV mass, volume and ejection fraction analysis was performed by two observers 

blinded to patient details and the results of the perfusion MRI and pressure wire study. 

Results were obtained using Argus Dynamic Signal (Siemens, Erlangen, Germany) by 

drawing endo and epicardial contours using the short axis cine images at both end 

diastole and end systole. This provided us with left ventricular end-diastolic volume and 

end-systolic volume from which we were also able to calculate the ejection fraction and 



 89

the stroke volume. Using the patient’s heart rate we were also able to calculate cardiac 

output. At end-diastole we also drew an epicardial border which allowed us to calculate 

LV mass in grams. 

 

3.2.4 Late Gadolinium Enhancement Mass Analysis 

By using the same software as to calculate LV mass, volume and ejection fraction 

(Argus Dynamic Signal) we were also able to draw around regions of late gadolinium 

enhancement pre and post PCI and CABG. No automated signal intensity based 

software was used in this analysis which was purely planimtery based. Both observers 

were instructed not to alter the windowing of the images prior to drawing around the 

areas of LGE. The volume of these regions was calculated for each slice of myocardium 

and collated to give a total volume. This value was multiplied by 1.06g/ml – the specific 

gravity of myocardium to provide us with the mass of infarcted myocardial tissue. 

 

3.3 Coronary Angiography 

On the day of the coronary angiogram patients had an 18G venous cannula inserted into 

the left antecubital fossa for the intravenous adenosine infusion during the pressure wire 

study. Patients had been instructed to abstain from caffeine containing products for the 

preceding 24 hours. Fully informed written consent for the coronary angiogram +/- PCI 

was obtained prior to entering the cardiac catheterisation laboratory. Patients were pre-

treated with clopidogrel prior to the day of the angiogram in case PCI was indicated. 

Angiography was performed at either the Western Infirmary or the Golden Jubilee 

National Hospital in Glasgow using a General Electric (GE) Innova 2100 catheterisation 

laboratory. Arterial access was obtained in the vast majority of patients from the right 

radial artery using a 6F sheath. A sterile field was then created around the patient. Guide 
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catheters were used for the purposes of our diagnostic images and in the vast majority of 

patients we used an EBU3.5 (Medtronic, Launcher) for cannulation of the left coronary 

ostium and a JR4 (Medtronic, Launcher) for the right coronary ostium. Intracoronary 

glyceryl trinitrate (200µg) was injected following cannulation of the coronary arteries to 

reduce the occurrence of coronary artery spasm. We obtained cine coronary angiogram 

images in the standard planes for offline quantitative coronary angiographic (QCA) 

analysis. All patients had left and right anterior oblique images in both the cranial and 

caudal positions. Depending on the coronary anatomy other appropriate views were 

acquired. 

 

3.3.1 Quantitative Coronary Angiography (QCA) 

QCA was performed using GE automated edge detection software which calibrates 

using the coronary guide catheter as its reference diameter (Centricity Cardiology 

CA1000, GE). This method of analysis was validated in 2004.(117) Two observers 

blinded to all patient demographic and clinical details analysed each of the coronary 

angiograms. Both observers (the author of this thesis and a cardiac technician with over 

10 years of clinical trial and core laboratory experience) had been trained by a GE 

representative and had clinical and research experience of this software and older 

software packages. Both observers would mark the region of interest within a coronary 

artery which they felt was the most severe region of coronary arterial disease. The 

software would then calibrate the minimal luminal diameter, reference vessel diameter 

(prior to a stenosis), lesion length and ideal vessel diameter at stenosis. From these 

figures the % DS and area of stenosis were calculated. No manual override of the 

generated contours was possible with this software package, however should the 

reference vessel diameter or minimal luminal diameter be affected by a side branch then 

the position of these measurements could be altered as appropriate. In the event of an 
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ostial stenosis then the reference vessel diameter was selected from the closest section 

of normal appearing artery distal to the stenosis. The two observers performed this for at 

least 3 coronary arteries per patient depending on circulatory dominance and number of 

occluded arteries. For occluded arteries only the reference vessel diameter was recorded 

where possible. Both observers were blinded to patient details, the pressure wire results 

and patient outcome. 

 

3.4 Troponin I Measurement 

This was performed in all patients who underwent PCI. Serum samples were collected 

at approximately 24 hours following PCI and transferred immediately to the 

biochemistry laboratory Samples were analysed by an immunoassay technique on a 

biochemistry analyser (Abbott Diagnostic Instruments Ltd, Architect ci8200, Berkshire, 

England). The lowest limit of quantification in our laboratory was 0.04µg/L. The 

coefficient of variation for a mean value of 0.137 was 5.8%, for 0.528 was 7.2% and for 

13.591 was 6.8%. 

 

3.5 Coronary Pressure Wire 

Following the acquisition of the diagnostic coronary angiogram images patients would 

then have a coronary pressure wire study performed. The coronary pressure wire used in 

this study is a 0.0014 inch high fidelity wire with a sensitive temperature and pressure 

sensor 3 cm from its tip (Pressure Wire 5, RADI Medical Systems Ltd, Uppsala, 

Sweden). Figure 3.8 shows a RADI pressure wire which was used to provide us with the 

data required for the calculation of the FFR, CFR and the index of microcirculatory 

resistance (IMR). In addition to this the pressure wire also serves as a high performance 

guidewire for the delivery of balloons and stents for PCI. The 3cm tip of the wire is 
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made of platinum and can be easily shaped depending on the tortuosity of the artery to 

be interrogated. In addition the tip is radio-opaque which helps in deciding the length of 

stent or balloon to use. The wire comes in a plastic tube casing which is initially flushed 

with heparinised saline and unclipped from its attachments. The connecting electrical 

wire is then connected to the RADI Analyser® where measurements are displayed and 

recorded. The pressure wire is then calibrated prior to insertion into the guide catheter. 

It is then advanced to the coronary ostium where the needle introducer is removed and 

the pressure wire recorded pressure tracing is equalised with the aortic pressure trace 

obtained from the guide catheter. The pressure wire is then passed to the distal third of 

the coronary artery where possible and safe to do so. Once in position the measurements 

of FFR, CFR and IMR can be made. 

 

Figure 3.8 - The RADI pressure wire, with its temperature and pressure sensor 3cm 

from the tip. 
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3.5.1 Fractional Flow Reserve 

Once the wire is in a satisfactory position an intravenous adenosine infusion is given 

(140µg/kg/min) through the 18G cannula in the left antecubital fossa. The patient is 

warned beforehand to expect symptoms of chest pain, breathlessness, headache, facial 

flushing and dizziness and to let the operator know when these symptoms are 

experienced. The operator watches for the development of tachycardia and a blood 

pressure drop indicative of the achievement of maximal hyperaemia. Once steady state 

hyperaemia is achieved the mean distal pressure (Pd) mean aortic pressure (Pa) are 

recorded and divided to give us the FFR (Pd/Pa). This value is recorded for each of the 

coronary arteries. 

 

For the purpose of comparisons with MPRI and other areas of analysis as highlighted in 

the results section, chronic totally occluded (CTO) arteries have been given the FFR 

value of 0.4. This was decided at the end of the study following a review of the previous 

literature in the field and some of our own findings. Often the coronary pressure wire is 

not suitable to pass down CTO’s and other wires are designed specifically for this 

purpose. In the present study we were only able to pass the pressure wire across one 

occluded artery out of 35. The FFR distal to the occlusion in this artery was 0.3 and this 

is a reflection of the collateral supply to the myocardium distal to the coronary 

occlusion. We know that collateral perfusion varies widely between arteries from only 

minimal collateral flow up to 60% of maximal perfusion if the artery was not occluded 

and functioning normally.(118) In a study be Werner et al in 2006 of 107 patients with 

chronic total occlusion and no prior Q wave MI the collateral FFR was 0.32.(119) A 

further study of patients with CTO was published in 2006 in which patients who did not 

develop coronary steal had an average collateral FFR of 0.41.(120) The recently 

published FAME study in the New England Journal of Medicine assigned an FFR of 0.5 
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to CTO’s however no justification of this value was made in the manuscript.(121) We 

measured coronary wedge pressure during balloon inflation in 46 patients with severe 

CAD requiring PCI (FFR<0.75). Using this value to calculate collateral FFR provided a 

mean of 0.24 (SD=0.11). In CTO’s we would hope for better collaterals depending on 

how long the vessel was occluded for and how acutely the vessel occluded. However we 

know that collaterals will only provide up to 60% of normal maximal perfusion. Taking 

these factors together we have chosen an FFR of 0.4 for our CTO’s. 

 

3.5.2 Coronary Flow Reserve 

Whilst the pressure wire is in the distal third of the coronary artery and prior to the 

adenosine infusion the resting thermodilution curves are obtained for the measurement 

of the CFR. The shaft of the pressure wire acts as a proximal thermistor as it can 

measure temperature dependent electrical resistance. It is therefore able to detect the 

start of an injection of saline into the coronary artery. The distal sensor also detects the 

bolus of saline as it passes through the distal third of the coronary artery. From the 

proximal and distal curve we are able to determine the length of time it has taken for the 

bolus of saline to pass down the artery. This transit time (Tmn) is actually the time 

taken for half the saline injection to exit the tip of the coronary guide catheter and for 

half to pass the distal coronary sensor. During the study we give three 3ml boluses of 

room temperature saline down the coronary guide catheter measuring the Tmn after 

each injection. The mean of this value is automatically stored on the RADI Analyser. 

We try to ensure the than Tmn values are all within 10% of each other to ensure an 

accurate result. We then commence an adenosine infusion (140µg/kg/min) and once we 

are happy that maximal hyperaemia has been achieved we repeat the three 3ml boluses 

of saline to give us a mean Tmn at stress. The CFR is then calculated automatically on 
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the RADI Analyser by dividing the mean rest Tmn by the mean stress Tmn. This value 

is also calculated for all three coronary arteries where possible per patient. 

 

3.5.3 Index of Microcirculatory Resistance (IMR) 

Using the aforementioned results we are also able to calculate the index of 

microcirculatory resistance (IMR) which is a new measure of the function of the 

microvasculature which received recognition during the course of this research study. 

The IMR is calculated by multiplying mean distal coronary pressure (Pd) by the 

hyperaemic transit time (Tmn). This is also known as the uncorrected IMR (IMRuncorr) 

where the contribution of collateral vessels is ignored. This calculation holds true in 

arteries in which there is no epicardial stenosis. In the event of significant coronary 

arterial disease the coronary wedge pressure (Pw) is necessary for the accurate 

calculation of the IMR. This is obtained when a balloon or stent is inflated in the 

coronary artery with the distal pressure wire sensor distal to the balloon or stent. Once 

antegrade flow is blocked by the stent or balloon the distal pressure sensor measures 

only the collateral flow to the distal coronary artery. This is measured on the RADI 

Analyser and stored for calculation of the corrected IMR (IMRcorr). The equation for 

the calculation of IMRcorr then becomes:- 

 

IMRcorr=Pa x Tmn x [(Pd-Pw)/(Pa-Pw)] 

 

Pa is the aortic pressure as measured by the guide catheter in the coronary ostium and 

Tmn is the mean transit time at hyperaemia as used in the equation to calculate the CFR. 

IMR only became established as a method of assessing the microcirculation after our 

study had commenced. As such no measurements were recorded in this regard until 

after the 8th patient was recruited into the study. In coronary arteries with an FFR<0.75 
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which were treated by PCI, a coronary wedge pressure (distal coronary pressure when a 

balloon is inflated proximal to the distal pressure sensor) was recorded in order that we 

were able to calculate the corrected index of microcirculatory resistance. In the presence 

of coronary artery disease where collateral vessels have been formed, antegrade 

coronary flow does not equal myocardial flow and we therefore must take the 

contribution of collateral flow into account when calculating IMR.(68) 

 

The Tmn can also be used to calculate Qcorr which is 1/Tmn at maximal hyperaemia 

and is a surrogate of coronary flow. 

 

3.6 Adenosine 

Adenosine was chosen as our agent to induce pharmacological stress in both the 

MRMPI scans and the pressure wire studies. We used a continuous peripheral 

intravenous infusion at a dose of 140µg/kg/min using a large antecubital fossa vein. 

Adenosine solution was prepared and distributed from St Bartholomew’s in London 

containing 1mg/ml in a 120ml bag which was adequate for both the MRMPI and the 

coronary angiogram. Occasionally where no haemodynamic or symptomatic response to 

the adenosine infusion was seen during the angiogram or MRMPI, the operator would 

increase the rate of the infusion by 50% and if required 100% (provided the infusion 

device would allow) in order to achieve maximal hyperaemia. Increasing the rate of the 

adenosine infusion was at the discretion of the primary operator in the cardiac 

catheterisation laboratory and the doctor supervising / performing the MRMPI scan if 

no typical symptoms were experienced and if there was no increase in heart rate or fall 

in blood pressure. Patients who failed to demonstrate any haemodynamic or 

symptomatic response are hightlighted in later sections as “non-responders”. 
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3.7 Caffeine 

Prior to the MRMPI scans and the coronary angiogram each patient had venous blood 

taken for caffeine levels. This was repeated after the MRMPI and following the 

angiogram to act as a control. Caffeine levels were compared with the clinical response 

to adenosine (heart rate, blood pressure and symptoms) to see if there was any 

correlation, and were also compared with the results of the perfusion MRI scans and 

measurements of coronary and FFR. 

 

A recent review in the journal of nuclear cardiology recommends that until the potential 

problem of false negative results in stress perfusion studies is further clarified then 

simple measures should be implemented.(122) As such patients were advised to abstain 

from consuming dietary and drug sources of caffeine for the 24hrs prior to MRI 

scanning and the coronary angiogram. Appendix 8.1 was given to the patients as a guide 

as to what to avoid. Due to individual variations in the half life of caffeine certain 

subgroups of patients were asked to abstain from caffeine for 48 hours such as those 

suffering from liver disease, oral contraceptive pill users and patients taking cimetidine. 

 

3.8 Caffeine Analysis 

Clotted blood samples were obtained from patients prior to the MRMPI scans and the 

pressure wire studies. These samples were rapidly transferred to the biochemistry 

laboratory where the serum was extracted and stored between 2 – 8oC. Analysis of the 

samples was performed in the Biochemistry Department of Gartnavel General Hospital 

in Glasgow. Samples were batched for analysis of caffeine levels. This was performed 

using the Emit® caffeine assay which is a homogenous enzyme immunoassay technique 

(Dade Behring Inc, Cupertino, CA). This assay works by competition between caffeine 

in the serum of the sample and caffeine labelled with bacterial glucose-6-phospate 
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dehydrogenase which compete for sheep antibody binding sites. A reduction in enzyme 

activity occurs with antibody binding. By this method caffeine levels can be calculated 

in terms of enzyme activity. The results are produced automatically by a biochemistry 

analyser (Abbott Diagnostic Instruments Ltd, Architect ci8200, Berkshire, England). 

This method has been extensively validated and is commercially available for use.(123-

125) The coefficient of variance for our caffeine analysis over 7 measurement time 

points was 8.2%. 

 

3.9 Power Calculation and Statistical Analysis 

To maximize information, abnormality will be assessed on an artery rather than a 

patient basis. Since we plan to assess three arteries per patient, there is a possibility of a 

loss of information associated with any correlation in the correctness of the assessment 

of arteries in the same patient. The study will recruit sufficient subjects to generate 90 

normal arteries and at least 150 abnormal arteries. Assuming underlying sensitivity and 

specificity of 80% and no loss of information due to correlation of results from the same 

subjects, this will allow sensitivity to be estimated with a standard error of 3.3% and 

specificity with a standard error of 4.2%. Even with an information loss equivalent to a 

33% reduction (one third of arteries) in sample size, these standard errors will only 

increase to 4.0% and 5.2%. 

 

Sensitivity, specificity, positive and negative predictive values will be calculated with 

95% confidence intervals (CI) taking into account both within- and between-subject 

components of variance. Results will be presented as mean or median depending on the 

distribution of the data with standard deviation and ranges as appropriate. 95% 

confidence intervals are presented where appropriate. Students t-test, Mann-Whitney 

test, Pearson’s correlation coefficient, Wilcoxon rank sum test, analysis of variance 



 99

(ANOVA) with and without Tukey 95% simultaneous confidence intervals, Kruskal-

Wallis test and Cohen’s kappa statistics are used where indicated in the results. In order 

to determine if data were skewed we performed tests of skewness and kurtosis. 

Logarithmic and square transformations are used in cases of skewed data in order to 

produce data with a normal distribution so we can use the t-test for further statistical 

analysis. When transformation is not possible non-parametric tests are used instead such 

as when the data set contained zero. Boxplots illustrating results are frequently used 

throughout the Results section. Outliers are highlighted however are included in the 

subsequent statistical analyses. The author was observer 1 for each of the methods of 

analysis and various other research fellows / cardiac technicians acted as second 

observer as noted in the acknowledgements section. Both observers 1 and 2 were 

completely blinded from any patient demographics or clinical data prior to and during 

image analysis. Angiograms and MRMPI scans were set up for analysis by an external 

party familiar with the use of the analysis software. 
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4 Results 

4.1 Patient Baseline Characteristics 

Of the one hundred and three patients recruited into the study, 2 patients were excluded 

following the initial MRI scan with one patient refusing his coronary angiogram due to 

mental health problems and the other having to delay her angiogram due to unexplained 

iron deficiency anaemia which required investigation. 

 

The mean age as indicated in table 4.1 was 60 years with 74% of those patients being 

male in keeping with the male preponderance to developing coronary artery disease. 

The mean BMI for the patients was 30.1 which falls into the obese category. As shown 

in figure 4.1 only 10 patients had a normal BMI at less than 25. Forty-four patients fell 

into the obese categories with 12 patients being clinically obese and 2 patients being 

morbidly obese with a BMI of greater than 40. Fifty-nine patients were current or 

previous smokers and a substantial number were also known to have systemic 

hypertension and hyperlipidaemia (table 4.1). Two patients with severe chronic kidney 

disease were recruited into the study prior to the concern regarding nephrogenic 

systemic fibrosis (NSF) following exposure to gadolinium based MRI contrast agents. 

In addition over 50% of patients had a family history of premature coronary artery 

disease. On entry into the study the majority of patients were already taking aspirin, 

beta-blocker and statin (HMG CoA reductase inhibitors) medications. Fifty percent of 

patients were taking an angiotensin converting enzyme (ACE) inhibitor and 5% were 

taking an angiotensin receptor blocker (ARB). Calcium channel blockers, nitrates and 

nicorandil had also been prescribed as indicated in table 4.1. Clopidogrel had been 

prescribed in 44% of patients. 
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Table 4.1 - Risk factor profile for recruited patients. 

Risk Factor  

Mean Age (Years ± SD) 60 ± 9 

Male : Female 76 : 27 

Mean BMI ± SD 30.1 ± 4.3 

Current smoker 18 (17%) 

Ex-smoker 41 (40%) 

Type 1 diabetes mellitus 3 (3%) 

Type 2 diabetes mellitus 14 (14%) 

Hypertension 65 (63%) 

Hypercholesterolaemia 81 (79%) 

Previous MI 24 (23%) 

Family history of IHD 53 (51%) 

Stroke 2 (2%) 

Peripheral vascular disease 2 (2%) 

Renal failure:-  

 Grade 3 CKD 18 (17%) 

 Grade 5 CKD 2 (2%) 

Medication:-  

 Aspirin 91 (88%) 

 Clopidogrel 45 (44%) 

 Beta blocker 86 (83%) 

 ACE inhibitor 52 (50%) 

 Statin 91 (88%) 

 Calcium channel blocker 35 (34%) 

 Nitrate 31 (30%) 

 Nicorandil 35 (34%) 

 ARB 5 (5%) 
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Figure 4.1 - Patient BMI by category. 
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Baseline electrocardiographic changes are documented in table 4.2. All patients prior to 

entry into the study were in sinus rhythm. One patient of 57 (2%) developed atrial 

fibrillation following PCI and 9 of 15 (60%) CABG patients developed atrial fibrillation 

post-operatively. They all subsequently cardioverted prior to repeat MRI scanning. Nine 

patients had pathological Q waves indicative of previous transmural MI at the time of 

the initial MRI scan. Seventeen patients had resting ST depression raising the possibility 

of myocardial ischaemia and 3 patients had ST elevation, which was probably due to 

high take-off of the ST segment and not infarction. Twelve patients had either T wave 

inversion or biphasic T waves which is also potentially indicative of previous non-ST 

elevation acute coronary syndromes. A further twelve patients had voltage criteria for 

left ventricular hypertrophy (S wave in V1 or V2 + R wave in V5 or V6 =>35mV). 
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Table 4.2 - Baseline electrocardiograph findings. 

ECG Findings Patients n(%) 

1st Degree AV block 5 (5%) 

Pathological Q waves 9 (9%) 

Bundle branch block 4 (4%) 

ST depression 17 (17%) 

ST elevation 3 (3%) 

T wave inversion 8 (8%) 

Biphasic T waves 4 (4%) 

Left ventricular hypertrophy 12 (12%) 

 

4.2 Patient Outcome 

Figure 4.2 shows the distribution of coronary disease as determined by the FFR 

measurements. Patient outcome is shown in figure 4.3. The majority of patients had 

PCI, 57 (56%). Fifteen patients (15%) underwent CABG whereas 9 patients were found 

to have significant coronary artery disease however the pattern of disease and symptoms 

were felt to be best treated by medical therapy. Twenty (20%) patients had no 

significant CAD. 



 104

Figure 4.2 - Pattern of coronary artery disease as determined by FFR. 
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Figure 4.3 - Patient outcome following diagnostic angiography and pressure wire study. 
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4.2.1 Post -PCI Results 

The pre and post PCI pressure wire derived haemodynamic descriptive data are 

displayed in table 4.3. More data points are recorded post PCI as the pressure wire is 

sometimes unable to cross occluded vessels and a more flexible wire is required for this 

purpose. The pressure wire can usually be passed into the distal artery post PCI. 

 

Table 4.3 - Pressure wire data pre and post-PCI for all recorded arteries. Note that the 

number of arteries varies between pre and post-PCI depending on technical factors and 

whether the pressure wire was able to pass down the diseased artery. 

Pre-PCI Post-PCI  

n Mean Med SD Range n Mean Med SD Range 

Qcorr 49 2.30 1.89 1.59 0.47-7.14 57 4.99 4.76 2.56 1.47-10.0 

Pd/Pa 52 0.65 0.64 0.19 0.32-0.95 57 0.96 0.97 0.04 0.86-1.0 

FFR 64 0.54 0.52 0.15 0.17-0.78 68 0.90 0.90 0.06 0.73-1.0 

CFR 58 1.49 1.29 0.75 0.6-4.39 66 2.86 2.5 1.52 0.88-9.8 

IMR 

uncorr 
49 28.0 23.2 15.8 8.9-70.0 55 19.4 16.5 11.8 6.2-61.9 

IMR 

corr 
43 15.5 13.5 8.9 1.3-39.2 41 17.3 15.7 9.3 5.7-47.9 

 

There was a significant increase in the resting Pd/Pa following revascularisation and a 

significant increase in the FFR as expected. The CFR and Qcorr also significantly 

increased following PCI as shown in table 4.4. Uncorrected IMR significantly dropped 

following PCI however there was no difference in the corrected IMR. The change in 

corrected IMR for those patients who had this recorded pre and post PCI are presented 

in figure 4.4, showing no significant difference despite treatment of the epicardial 
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stenosis. Table 4.4 only contains data for those patients where pre and post PCI data are 

available as opposed to all measured data in table 4.3. 

 

Figure 4.4 - Line plot of corrected IMR pre and post PCI. 
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Table 4.4 - Paired pressure wire data for those arteries in which both a pre and post-PCI 

result was available with the results of the paired t-test. Due to skewed data all values 

required transformation prior to analysis. 

 Pre-PCI Post-PCI Paired T-Test 

Parameter n Mean Median SD Mean Median SD T-value P-value 

Pd/Pa 47 0.65 0.64 0.19 0.95 0.96 0.04 10.03 <0.0001 

FFR 59 0.54 0.52 0.15 0.89 0.90 0.06 14.8 <0.0001 

CFR 52 1.52 1.29 0.77 2.76 2.50 1.55 6.91 <0.0001 

IMRuncorr 42 28.62 22.90 15.7 19.35 16.50 11.6 3.66 0.001 

IMRcorr 37 16.19 16.82 8.86 17.18 15.47 9.46 0.96 0.35 

Qcorr 44 2.36 1.94 1.64 4.98 4.65 2.6 6.73 <0.0001 
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In total 81 arteries in 57 patients were treated by PCI. Forty-two patients (74%) 

underwent single vessel PCI, 13 (23%) had 2 vessel PCI and 2 (3%) had 3 vessel PCI as 

shown in figure 4.3. One hundred and twenty-eight stents were inserted in 74 vessels 

with a further 7 arteries treated by plain old balloon angioplasty (POBA). Of the stents, 

100 (78%) were drug eluting and 28 (22%) were bare metal. Of the 100 drug eluting 

stents 95 were Taxus (paclitaxel eluting) and 5 were Cypher (sirolimus eluting). 14 

(50%) of the inserted bare metal stents were Driver stents, 9 (32.1%) were Liberte 

stents, 2 (7.1%) were Minivision stents, and there was one (3.6%) Vision, one Yukon 

and one Microdriver stent. Data relating to the number of stents inserted per artery, 

maximum stent diameter, stent length, DS, area stenosis, lesion length and reference 

vessel diameter in the 74 arteries treated by PCI and stenting are displayed in table 4.5. 

 

Table 4.5 - Number of stents, maximum stent diameter, stent length, DS, area stenosis, 

lesion length and reference vessel diameter for the 74 arteries treated by PCI and 

stenting. 

 Arteries Mean Median SD Min Max 

Stent No 74 1.73 1.0 0.93 1.0 5.0 

Stent Diameter 74 3.06 3.0 0.45 2.25 5.0 

Stent Length 74 34.9 28.0 24.5 8.0 136.0 

Degree of Stenosis % 74 71.1 70.5 18.0 29.9 100 

Area of Stenosis % 74 88.1 91.1 10.8 50.9 100 

Lesion Length (mm) 63 16.9 15.2 7.5 7.1 43.3 

Ref Vessel Diameter (mm) 74 2.9 3.0 0.6 1.9 4.8 
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4.2.2 Post CABG Results 

Fifteen patients underwent CABG. Of these, 4 patients had 4 grafts, 8 patients had 3 

grafts and 3 patients had 2 grafts. Arterial revascularisation with the left internal 

mammary artery to the left anterior descending artery was performed in all 15 patients. 

The left radial artery was used to graft the posterior descending artery in 2 patients. 

Saphenous vein was used to graft the posterior descending artery in 8 patients, first 

obtuse marginal artery in 11 patients, second obtuse marginal artery in 2 patients, first 

diagonal artery in 2 patients, distal right coronary artery in 2 patients, left circumflex 

artery in 2 patients, and intermediate artery in 2 patients. 

 

Table 4.6 - Complications of coronary artery bypass surgery. 

Complication Number of Patients 

Atrial fibrillation 9 

Required prolonged CPAP 3 

Post-op bleeding requiring re-opening 2 

Prolonged inotropic support 2 

Transient ischaemic attack 1 

Psychosis 1 

Confusional state 1 

Pneumonia 1 

Sternal wound leak 1 

Leg wound infection 1 

 

The mean ischaemic time for these patients during surgery was 34.8 minutes (standard 

deviation 9.9, range 16-54 minutes). Mean bypass time was 59.6 minutes (standard 
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deviation 15.3, range 28-87 minutes). Mean theatre time was 174.2 minutes (standard 

deviation 29.4, range 130-210 minutes).  

 

Only 3 (20%) patients had no listed post-operative complications. The complications 

encountered by the remaining 12 patients are listed in Table 4.6. 

 

4.2.3 Follow-up MRMPI Scans 

PCI treated patients: of those who attended for their 24 hour post-PCI follow up 

MRMPI scan, 50/54 (93%) had a reduction in the number of segmental perfusion 

defects with 24 (44%) having normal perfusion at this time (table 4.7). At 4 weeks 

24/52 patients (46%) had normal perfusion. Nine patients had untreated occluded 

coronary arteries which accounts for some of the residual perfusion abnormalities. The 

reduction in perfusion defects from MRI1 to MRI2 was statistically significant 

(p<0.0001) however from MRI2 to MRI3 was not (p=0.26). 

 

CABG treated patients: this group had significantly more perfusion defects on the 

presenting MRMPI compared to the PCI group (p=0.004). Of the 14 CABG patients 

who attended for follow-up MRMPI, 12 (86%) had a reduction in the number of 

hypoperfused segments with 5/14 (36%) having normal perfusion. There was no 

statistically significant difference in the number of residual perfusion defects between 

those treated by PCI or CABG (table 4.7) however, there was a trend towards fewer 

segments in the PCI group (p=0.1). 

 

Medically treated patients: 4/9 patients (44%) who received optimisation of their 

medical therapy refused to attend for a second scan. It is difficult to draw any 

conclusions from this small group however 4 of the remaining 5 patients (80%) did 
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have a reduction in the number of hypoperfused territories on their second MRMPI 

scan. 

 

Table 4.7 - Perfusion MRI data showing the number of scans performed at each stage 

with the median number of perfusion defects and their standard deviation and ranges for 

each of the three MRI scans per patient in the PCI group and the two scans in the 

CABG and medical therapy groups. These data are the mean of the results from the two 

independent observers. 

 N(%) Median (± SD) Range 

Pre-PCI MRI 57 (100%) 5 ± 2.9 0 – 13.5 

24 Hours Post-PCI MRI 54 (95%) 1 ± 2.3 0 – 7.5 

4 Week Post-PCI MRI 52 (91%) 0 ± 1.9 0 – 6.5 

Pre-CABG MRI 15 (100%) 9 ± 3.5 0 – 11.5 

4 Week Post-CABG MRI 14 (93%) 2.5 ± 3.6 0 – 12 

Pre-Medical Rx MRI 9 (100%) 4 ± 2.1 0 – 5.5 

3 Month Post Medical Rx MRI 5 (56%) 1 ± 2.0 0 – 4.5 

 

4.2.4 Perfusion Defect Normalisation Post-Revascularisation 

A total of 16 coronary territories demonstrated hypoperfusion on the baseline MRMPI 

but were not revascularised and 11 hypoperfused coronary territories had FFR values 

greater than or equal to 0.75 (false positives). This left 94 hypoperfused coronary artery 

territories on the baseline MRMPI which were revascularised and had at least one 

follow-up scan. Of these 64 (68%) were revascularised by PCI and 30 (32%) by CABG. 

51/64 (80%) territories treated by PCI and 19/30 (63%) treated by CABG showed 

complete resolution of the perfusion defect on follow-up MRMPI scanning. An 

additional 10/64 (16%) treated by PCI and 8/30 (27%) treated by CABG had partial 



 111

resolution of the perfusion defect on follow-up MRMPI. Six (6%) coronary territories 

showed persistent abnormal perfusion despite revascularisation (3 had PCI and 3 had 

CABG). 

 

In those patients with available FFR data the mean FFR pre-revascularisation was 0.51 

(median – 0.47, SD=0.15, Interquartile Range 0.4 – 0.65) in those territories with 

complete resolution of perfusion defects following revascularisation. This is compared 

to 0.44 (median – 0.4, SD=0.08, Interquartile Range 0.4 – 0.5) in the territories with 

partial resolution of hypoperfusion and 0.45 (median – 0.4, SD=0.08, Interquartile 

Range 0.4 – 0.52) in the territories with no resolution of hypoperfusion post-

revascularisation. The higher pre-revascularisation FFR in those patients with complete 

resolution of the perfusion defect was statistically significant compared to the partial 

resolution group (p=0.01). There was no difference between the complete resolution and 

no resolution groups (p=0.15) and the partial resolution and no resolution groups 

(p=0.84) however there were only 6 data points in the no resolution group making 

meaningful conclusions difficult. These data are presented on figure 4.5. 
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Figure 4.5 - Boxplot of FFR values pre-revascularisation in the group of patients who 

had complete, partial and no resolution of their perfusion defects on MRMPI post PCI 

and CABG. This demonstrates the median FFR, the interquartile range and spread of 

data for each group. 
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The pre-revascularisation diameter of stenosis (DS) was also analysed and compared 

between the complete resolution, partial resolution and no resolution groups. The mean 

DS in the complete resolution group was 72.9% (median – 70.2%, SD=17.4, 

Interquartile Range 59.5 – 86.9%) compared to 79.8% (median – 76.2%, SD=17.1, 

Interquartile Range 66.6 – 100%) in the partial resolution group and 82.8% (median – 

85.6%, SD=19.5, Interquartile Range 66.5 – 100) in the no resolution group. These data 

are presented on figure 4.6. The trend towards milder coronary disease in the complete 

resolution group was not statistically significant when compared with the partial 

resolution group (p=0.14) and the no resolution group (p=0.29). Bearing in mind that 

DS has little bearing on the functional significance of coronary disease, the FFR data 

are probably of greater significance here. 
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Figure 4.6 - Boxplot of DS (%) in the coronary arteries pre-revascularisation in the 

group of patients who had complete, partial and no resolution of their perfusion defects 

on MRMPI post PCI and CABG. This demonstrates the median DS, the interquartile 

range and spread of data for each group. 
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PCI patients who had FFR data post revascularisation had a mean FFR of 0.90 (median 

0.91, SD=0.06, Interquartile Range 0.86 – 0.95) in the complete resolution group. This 

is compared to a mean FFR of 0.92 (median – 0.93, SD=0.05, Interquartile Range 0.9 – 

0.96) in the partial resolution group and 0.88 (median – 0.9, SD=0.05, Interquartile 

Range 0.82 – 0.92) in the no resolution group. As these data were skewed to the left a 

square transformation was performed prior to comparing the groups however no 

statistically significant differences were found between each of the groups. This is an 

interesting observation and raises the possibility that the persistence of a perfusion 

defect within a territory may be caused by plaque embolisation into the microcirculation 

as opposed to any residual epicardial disease. 
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4.3 First Pass Magnetic Resonance Myocardial Perfusion Imaging (MRMPI) 

4.3.1 Qualitative Analysis of MRMPI Scans 

The technical quality of all MRMPI scans was felt to be adequate for visual diagnostic 

purposes. Figure 4.7 gives an example of the quality of our imaging with one of the 

cases from the study with a left anterior descending coronary artery perfusion defect. Of 

the 101 perfusion scans undertaken 25 (24.8%) were reported as normal, 40 (39.6%) 

demonstrated 1 vessel disease, 26 (25.7%) 2 vessel disease and 10 (9.9%) 3 vessel 

disease. 122 perfusion defects were reported of which 49 (40.2%) were in the territory 

of the left anterior descending coronary artery, 32 (26.2%) in the territory of the left 

circumflex / obtuse marginal artery and 41 (33.6%) in the territory of the right coronary 

artery. In the final statistical analysis one perfusion defect was omitted as we had no 

FFR data for the diseased artery supplying that territory. Therefore, where comparisons 

have been made with FFR, only 121 perfusion defects are quoted. Interobserver 

variability between the two observers was assessed on the identification of abnormal 

myocardial perfusion per patient which produced a κ of 0.97 indicating excellent 

agreement between the two observers. The interobserver variability for the extent of 

CHD (normal, 1, 2 or 3 vessel disease) was 0.76. Both observers agreed on the pattern 

of CHD in 84 (83.2%) scans and the 3rd observer adjudicated on the remaining 17 

(16.8%). Interestingly the 3rd observer agreed with observer 1 on 47% of occasions and 

observer 2 on the remaining 53%. 
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Figure 4.7 - An anteroseptal subendocardial perfusion defect in a mid-ventricular slice 

following the injection of gadolinium at maximal hyperaemia (A). A stenosis in the 

proximal left anterior descending coronary artery in the LAO caudal projection (B). The 

FFR (yellow). The aortic and distal coronary pressure tracings are widely separated at 

maximal hyperaemia with an FFR of 0.5. 

 

 

4.3.1.1 Magnetic Resonance Myocardial Perfusion Imaging (MRMPI) versus FFR. 

The results are summarised in Table 4.8. Data are presented using the conventional FFR 

cut-off of <0.75 and also the more conservative FFR cut-off of ≤0.8 as was used in the 

FAME study which reported its findings this year.(126) Arteries which were chronic 

total occlusions (CTO) were given an FFR value of 0.4 as the pressure wire was not 
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able to cross these lesions. This takes into account the contribution to coronary 

territories of collateral blood flow. 110 coronary territories demonstrated a perfusion 

defect and a FFR <0.75 (true positive). There were 11 coronary territories with a 

perfusion defect but an FFR ≥0.75 (false positive). When the higher FFR cut-off of 0.8 

is used the number of false positive results falls to 3. 168 coronary territories showed no 

perfusion defect and a FFR ≥0.75 (true negative). 11 coronary territories showed no 

perfusion defect but were subtended by an artery with FFR <0.75 (false negative). 

 

Table 4.8 - MRMPI compared to FFR at 2 cut-off values. Results are expressed per 

coronary artery territory. 

 FFR<0.75 FFR≥0.75 Total FFR≤0.8 FFR>0.8 Total 

Positive MRMPI 110 11 121 118 3 121 

Negative MPMRI 11 168 179 26 153 179 

Total 121 179 300 144 156 300 

 Excluding non-responders to adenosine (5) 

 FFR<0.75 FFR≥0.75 Total FFR≤0.8 FFR>0.8 Total 

Positive MRMPI 109 10 119 116 3 118 

Negative MPMRI 6 160 166 21 145 167 

Total 115 170 285 137 148 285 

 

There was a large increase in false negative results when the 0.8 cut-off was used with 

26 territories without perfusion defects having an FFR ≤0.8. The sensitivity and 

specificity and positive and negative predictive values of MRMPI for the detecting of 

physiologically significant coronary artery disease using either FFR cut-off are shown 

in table 4.9. Five patients showed no haemodynamic or symptomatic response to the 

intravenous adenosine infusion during perfusion imaging. This was despite an increase 
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in the dose above the standard 140µg/kg/min. Tables 4.8 and 4.9 demonstrate the results 

when the data from these 5 patients are removed. 

 

Table 4.9 - Sensitivity and specificity and positive and negative predictive values of 

MRMPI for the detection of significant coronary artery disease as defined using FFR. 

 FFR<0.75 FFR≤0.8 

 
All Patients 

Excluding 

Non-Responders 
All Patients 

Excluding 

Non-Responders 

Sensitivity (%) 

(95% CI) 

90.9 

(84.2-97.6) 

94.8 

(89.6-99.9) 

81.9 

(73.5-90.4) 

84.7 

(76.7-92.7) 

Specificity (%) 

(95% CI) 

93.9 

(88.9-98.8) 

94.1 

(89.1-99.2) 

98.1 

(95.0-101.2) 

97.9 

(94.7-101.3) 

PPV (%) 

(95% CI) 

90.9 

(84.3-97.5) 

91.6 

(85.2-98.0) 

97.5 

(94.0-101.0) 

97.5 

(93.9-101.1) 

NPV (%) 

(95% CI) 

93.9 

(88.9-98.9) 

96.4 

(92.4-100.4) 

85.5 

(78.2-92.8) 

87.4 

(80.2-94.5) 

Diagnostic 

Accuracy (%) 
92.7 94.4 90.3 91.6 

 

 

4.3.1.2 Per-Patient Analysis of MRMPI for the Detection of Significant CAD 

Using qualitative analysis of the MRMPI scans we also assessed the diagnostic 

accuracy of this method of assessing myocardial perfusion on a per-patient basis. For 

this analysis we chose an FFR<0.75 as our cut-off for the diagnosis of physiologically 

significant coronary artery disease. Of the 76 patients with a perfusion defect on their 

MRMPI scan, 74 (97%) had an FFR<0.75 in at least one coronary artery. There were 2 
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false positive scans with FFR≥0.75 in all coronaries. Of the 25 patients with no 

perfusion defects on MRMPI, 21 (84%) had FFR values ≥0.75 in all coronaries and 

there were 4 false negative patients. These data are presented in table 4.10. Therefore, of 

101 patients there was a false positive rate per patient of 2% and a false negative rate of 

4%. On a per patient analysis MRMPI has a sensitivity, specificity, positive and 

negative predictive value of 95%, 91%, 97% and 84% respectively. The diagnostic 

accuracy was 94.1%. 

 

Table 4.10 - Per-patient analysis of qualitative MRMPI versus FFR<0.75 cut-off. 

 FFR<0.75 FFR≥0.75 Total 

Positive MRMPI 74 2 76 

Negative MRMPI 4 21 25 

Total 78 23 101 

 

4.3.1.3 Magnetic Resonance Myocardial Perfusion Imaging (MRMPI) versus CFR. 

The CFR was recorded in 250 coronary arteries not including the 35 total occlusions. 

Four patients (4%) had CFR measured in 4 arteries, 57 (56%) in three arteries, 27 (27%) 

in two arteries, 9 (9%) in one artery and 4 (4%) had no CFR measurements (three left 

main stem stenoses and one patient with poor guide catheter engagement). CFR 

measurements were taken from 86 (85%) LAD coronary arteries, 62 (61%) RCA’s, 44 

(44%) LCx arteries, 36 (36%) OM arteries, 9 (9%) LPDA arteries, 7 (7%) IM arteries 

and 6 (6%) D1 arteries. The median CFR was 2.2 (SD=1.32; Range 0.45–8.21). 

Analysis of sensitivity, specificity and predictive values was undertaken including 

occluded vessels and limiting the number of major coronary arteries per patient to three. 

This provided data for 275 of 303 (91%) coronary arteries. When CFR with a cut-off of 

<2.5 is taken as the gold standard for the diagnosis of significant epicardial / 
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microvascular disease there were 94 (34%) coronary artery territories with a perfusion 

defect on MRMPI and a CFR in the corresponding coronary artery of <2.5. There were 

12 (4%) false positives with perfusion defect and a normal CFR≥2.5. Eighty-nine (32%) 

territories demonstrated normal perfusion on MRMPI and had a normal CFR however 

80 (29%) territories failed to show any perfusion defect and had a CFR<2.5. These are 

therefore false negatives using CFR as the gold standard. This provided a sensitivity, 

specificity, positive and negative predictive value of 54%, 88%, 89% and 53% 

respectively. The diagnostic accuracy was 66.5%. 

 

Looking specifically at 10 of the 11 cases (1 excluded as had no CFR measurement) 

with a false positive perfusion MRI territory (table 4.8) as defined with an FFR≥0.75 as 

the gold standard, 6 (60%) had a CFR<2.5 raising the possibility that these perfusion 

defects were attributable to microvascular disease. However, 8 of 10 (80%) of these 

false positives had an FFR within the FFR grey zone 0.75-0.8. We also looked at those 

patients with a FFR>0.8 with a CFR<2.5 who are out with the FFR grey zone and may 

have microvascular disease in isolation. Sixty-seven coronary arteries in 50 patients 

were identified to have these physiological parameters however 12 territories were 

excluded from further analysis due to the presence of late gadolinium enhancement 

indicating previous MI. Of the remaining 55 coronary arteries 16(29%) were LAD 

arteries, 15 (27%) LCx arteries, 14 (25%) OM arteries, 8 (15%) RCA, 1 (2%) LPDA 

and 1 (2%) D1 artery. Only one (2%) coronary territory was identified to have a 

perfusion defect on MRMPI suggesting that by visual analysis MRMPI is unable to 

detect isolated microvascular disease. We then looked at those arteries with an FFR>0.8 

and CFR<2.0 who would be more likely to have isolated microcirculatory disease. 

Twenty eight arteries were identified which fit this criteria and had no evidence of late 

gadolinium enhancement on MRI. None of these patients had any visually apparent 
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perfusion defect again confirming that qualitative MRMPI cannot diagnose isolated 

microvascular disease. The mean Fermi deconvolution derived MPRI for 26 of the 28 

(93%) coronary territories that had this analysis performed was 2.2 which is below the 

MPRI cut-off of 2.41 documented in chapter 4.3.2.2. Sixteen of these 26 (62%) 

coronary territories had a MPRI of less than 2.41. We didn’t perform sub-epicardial 

MPRI for comparison with the subendocardium and therefore we are unable to make 

any more meaningful conclusions from this data. 

 

4.3.1.4 Magnetic Resonance Myocardial Perfusion Imaging (MRMPI) versus Index of 

Microcirculatory Resistance (IMR) 

There is no distinct cut-off in IMR value to discriminate coronary arteries with normal 

microvascular function and abnormal microvascular function. The relationship between 

uncorrected IMR and FFR suggests as shown in Figure 4.8 that as FFR improves 

uncorrected IMR falls. This probably reflects that vessels with normal epicardial 

function are likely not to have significant microvascular disease. The r value was -0.3 

which was a significant negative correlation (p<0.001). 
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Figure 4.8 - Scatterplot of uncorrected index of microcirculatory resistance (IMR) 

(mmHgs-1) and FFR. Pearson’s correlation coefficient r=-0.3, p<0.0001. 
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The relationship between corrected IMR where the coronary wedge pressure has been 

recorded and the FFR is more complex. As shown on figure 4.9 corrected IMR 

increases with increasing FFR with r=0.32 which was a significant correlation. Clearly 

the patients in this analysis all had significant epicardial disease on the basis of their 

FFR measurement triggering PCI. However within this group the measured 

microvascular resistance increases as FFR increases. The mean IMR in this group was 

14.4±8.5mmHgs-1 which is relatively low given the severity of the epicardial disease 

and probably reflects the development of a good supply of collaterals to the ischaemic 

myocardium. The reduction in IMR with increasing epicardial disease severity may 

reflect the amount of collateral supply which has developed in the most ischaemic areas. 
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Figure 4.9 - Scatterplot of corrected index of microcirculatory resistance (IMR) 

(mmHgs-1) and FFR. Pearson’s correlation coefficient r=0.32, p=0.03. 
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One of the questions we set out to answer was does microvasular disease account for 

perfusion defects in arteries with no significant epicardial coronary disease (FFR≥0.75). 

In our study we had 11 false positive MRMPI scans and we compared these patients’ 

microvascular function results of CFR and IMR to those patients with perfusion defects 

and a significant FFR (<0.75) and patients with completely normal arteries i.e. no 

perfusion defect on MRMPI and FFR≥0.75. These results are presented in table 4.11. 

The differences between CFR, uncorrected IMR and corrected IMR between the false 

positives (column 1) and the true positives (column 2) were not significant (p values 

were 0.07, 0.65 and 0.45 respectively). The FFR was significantly lower in the true 

positives (p<0.0001). There were no significant differences when comparing the false 

positives with the true negatives (p=0.17, 0.31 and 0.77). The false positives did 

however have a significantly lower FFR (p<0.0001) and 8 of the 11 patients had FFR 

values in the “grey zone” between 0.75 and 0.8. So in this population, false positive 

MRMPI scans do not appear to be due to microvascular disease. 
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The final area of microvascular disease we examined was the relationship between CFR 

and uncorrected and corrected IMR. The scatterplot on figure 4.10 shows the 

relationship between uncorrected IMR and CFR. The r value was -0.3 indicating that as 

CFR increases IMR decreases as one would expect. 

 

Figure 4.10 - Scatterplot of CFR versus uncorrected index of microcirculatory 

resistance (IMRuncorr). Pearson’s correlation coefficient r=-0.3, p<0.0001. 
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There was no correlation when the corrected IMR was compared with CFR in figure 

4.11 (r=-0.02, p=0.9) suggesting that when collaterals are taken into account, there is no 

difference in microvascular function with increasing CFR. 
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Figure 4.11 - Scatterplot of CFR versus corrected index of microcirculatory resistance 

(IMRuncorr). Pearson’s correlation coefficient r=-0.02, p=0.91. 
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Table 4.11 - A comparison of haemodynamic and QCA parameters in patients with false positive (column 1), true positive (column 2) and true 

negative (column 3) MRMPI scans. 

 Perfusion Defect / FFR≥0.75 Perfusion Defect / FFR<0.75 No Perfusion Defect / FFR≥0.75 

 Number Mean Median SD Number Mean Median SD Number Mean Median SD 

FFR 11 0.79 0.77 0.04 60 0.52 0.50 0.14 164 0.92 0.94 0.07 

CFR 10 2.42 1.78 1.66 54 1.52 1.28 0.84 164 2.84 2.67 1.26 

IMRuncorr 9 22.6 21.8 9.68 48 26.9 22.9 16.08 153 20.2 17.0 11.21 

IMRcorr 3 18.0 17.81 7.84 34 14.4 12.8 8.45 2 28.1 28.1 15.7 

Qcorr 9 3.57 2.78 1.96 48 2.40 1.94 1.71 154 4.65 4.17 2.26 

%stenosis 11 52.6 51.9 18.7 61 67.54 68.0 13.8 164 25.0 24.7 20.9 

Lesion length 11 14.5 15.0 7.7 60 17.9 15.8 8.7 135 12.5 12.6 8.2 

 

 

 



4.3.1.5 Magnetic Resonance Myocardial Perfusion Imaging (MRMPI) versus 

Quantitative Coronary Angiography (QCA) 

Table 4.12 outlines the results when MRMPI findings are compared with a QCA cut-off 

of 70% DS as has been done in multiple previous studies.(18;19;22;24;25) There were 

72 territories with perfusion defects and a DS in the corresponding artery ≥70%. There 

were 50 territories with abnormal perfusion and a DS <70%. 178 territories had no 

perfusion defect and a DS <70%. Only 2 territories failed to show a perfusion defect on 

MRMPI with a DS ≥70% on QCA. Using a DS cut-off of 70% as the gold standard 

resulted in a sensitivity, specificity, positive and negative predictive value of 97%, 78%, 

59% and 99% respectively as shown on table 4.13 along with the 95% confidence 

intervals. As documented previously there were 5 patients who failed to develop either 

symptoms or a haemodynamic response during the adenosine infusion. These patients 

were labelled as non-responders and the data excluding them from the analysis is 

included in table 4.12. The effect this has on the diagnostic accuracy of MRMPI is 

shown on table 4.13. This data shows that the number of false negative scans drops to 

zero leading to further improvements in sensitivity and negative predictive value. Figure 

4.12 shows a comparison of %DS with FFR. We confirmed a previously described 

finding that degree of stenosis correlates poorly with functional significance (Figure 

4.13). The majority of coronary arteries with an FFR<0.75 had a degree of stenosis (DS) 

less than 70% (39/68). Occluded arteries have been excluded from this analysis. The 

mean degree of stenosis for those arteries with a significant FFR was 65.2% (SD=14.9, 

range 29.9–96.3). For comparison, figure 4.14 shows the DS for those arteries with 

FFR>0.75. Excluding those arteries which are angiographically completely normal the 

mean degree of stenosis was 27.2% (SD=21.5, Range 0-84.8). The degree of stenosis 

was significantly higher in the group with physiologically significant disease as 

expected (T=16, p<0.0001, DF= 169). The mean area of stenosis for arteries with an 
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FFR<0.75 was 85.3% (SD=10.9, Range 50.9 – 99.8) compared to 42.2% (SD=30.7, 

Range 0 – 95.8) in those arteries with an FFR≥0.75 (T=17, p<0.0001). This analysis 

also excludes totally occluded vessels. 

 

Table 4.12 - MRMPI compared to quantitative coronary angiography (QCA). 

 % DS ≥70% % DS <70% Totals 

Positive MRMPI 72 50 122 

Negative MRMPI 2 178 180 

Totals 74 228 302 

 Excluding non-responders to adenosine (5) 

Positive MRMPI 71 49 120 

Negative MRMPI 0 167 167 

Totals 71 216 287 

 

Table 4.13 - Sensitivity, specificity, positive and negative predictive values of MRMPI 

in the diagnosis of significant coronary disease as defined by a DS≥70%. 

 All Patients 

(95% CI) 

Excluding Non-Responders 

(95% CI) 

Sensitivity (%) 97.3 (92.8-101.8) 100 (100-100) 

Specificity (%) 78.1 (70.5-85.6) 77.3 (69.4-85.2) 

PPV (%) 59.0 (47.5-70.6) 59.2 (47.5-70.9) 

NPV (%) 98.9 (96.9-100.9) 100 (100-100) 

Diagnostic Accuracy (%) 82.8 82.9 
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Figure 4.12 - A comparison of DS by QCA with FFR measurements with a line of best 

fit. R = -0.84 indicating a strong degree of correlation (Pearson Correlation Coefficient). 

CTO’s are included with an FFR of 0.4 to take into account collateral flow. 
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Figure 4.13 - Dot plot showing the degree of stenosis for those arteries with a 

significant FFR<0.75. A 70% cut-off has been accepted in many of the previous studies 

to represent an artery with haemodynamically significant disease. The majority of 

arteries in our study with physiologically significant disease have stenoses beneath 70% 

severity. No occluded coronary arteries are included in this figure. 
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Figure 4.14 - Dot plot showing the degree of stenosis for those arteries with no 

physiologically significant disease (FFR≥0.75). Excluding 49 arteries with no evidence 

of luminal narrowing (0% stenosis). 
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4.3.2 Myocardial Perfusion Reserve Index (MPRI) 

4.3.2.1 MPRI Interobserver Variability For All Myocardial Segments Using Fermi 

Deconvolution Method 

MPRI data using fermi deconvolution was calculated by two observers in 212 (94%) of 

226 scans analysed. Of the 14 scans not analysed by both observers: 4 were felt to be 

uninterpretable by both observers due to image artefact; 3 were felt to be uninterpretable 

by observer 1 due to artefact; 4 were felt to be uninterpretable by observer 2 due to 

artefact and there were missing data in 3 of the scans. 

 

In order to assess interobserver variability for the huge amounts of data produced from 

the MPRI analysis, we first looked at the mean MPRI for the complete myocardium (all 

16 segments) per patient scan. This analysis included all available scans including all 
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pre and post revascularisation and pre and post medical therapy as well as those patients 

with normal coronary arteries. The mean MPRI for the 212 scans analysed by observer 

1 was 2.37 (Median=2.32, SD=0.81, Range 0.70-4.92) and observer 2 was 2.20 

(Median=2.18, SD=0.75, Range 0.79-4.92). The Pearson Correlation Coefficient for 

obsrever 1 versus observer 2 was r=0.9 with p<0.0001. 

 

In order to examine the level of agreement between observers a Bland-Altman plot was 

created showing the difference between observers against their mean (Figure 4.15). This 

shows no relationship between measurement error and the mean values which we take 

to be the true mean MPRI for 16 segments per scan. In order to examine the 

measurement bias we calculated the mean difference between observers which was 0.18 

with a standard deviation of 0.36. As shown in figure 4.15 most of the differences 

between observers lie between 0.18 and ±1.96xSD. Examining the limits of agreement 

between observers showed that observer 2 may be 0.53 below or 0.89 above observer 1. 
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Figure 4.15 - Difference in mean MPRI for all 16 segments per scan against the mean 

MPRI with reference lines showing the mean±1.96SD within which 95% of the 

differences lie. 
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Examining the precision of the estimated limits of agreement the standard error of the 

mean difference was calculated to be 0.025 with 211 degrees of freedom (DF) and a 

t=1.97. The 95% confidence interval of the bias was 0.13 to 0.23. The standard error of 

the 95% limits of agreement was 0.043, therefore the 95% confidence intervals for the 

lower limit of agreement were narrow at -0.62 to -0.45 and for the upper limit of 

agreement were 0.81 to 0.98.  

 

We then assessed the interobserver variability of Fermi deconvolution derived MPRI 

per coronary artery territory, where a mean MPRI per artery according to the 

myocardial segment as AHA model was taken from the data of each of the 2 observers. 

The mean MPRI for the 621 coronary artery segments analysed by observer 1 was 2.35 

(Median=2.27, SD=0.89, Range 0.32-5.62) and observer 2 was 2.19 (Median=2.13, 
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SD=0.82, Range 0.39-5.24). The Pearson Correlation Coefficient for obsrever 1 versus 

observer 2 was r=0.85 with p<0.0001. 

 

The Bland-Altman plot to assess the limits of agreement between the two observers is 

presented in Figure 4.16. This shows no relationship between measurement error and 

the mean values which we take to be the true mean MPRI for each of the coronary 

artery territories. Examining the measurement bias revealed a mean difference between 

observers of 0.17 with a standard deviation of 0.47. Figure 4.16 shows that most of the 

differences between observers lie between 0.17 and ±1.96xSD. Examining the limits of 

agreement between observers showed that observer 2 may be 0.75 below or 1.1 above 

observer 1. 

 

Figure 4.16 - Difference in mean Fermi deconvolution derived MPRI for each coronary 

artery territory per scan against the mean MPRI with reference lines showing the 

mean±1.96SD within which 95% of the differences lie. 
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We then examined the precision of the estimated limits of agreement. The standard error 

of the mean difference was calculated to be 0.019 with 620 DF and a t=1.97. The 95% 

confidence interval of the bias was 0.14 to 0.19. The standard error of the 95% limits of 

agreement was 0.032, therefore the 95% confidence intervals for the lower limit of 

agreement were narrow at -0.81 to -0.69 and for the upper limit of agreement were 1.03 

to 1.15. 

 

The lowest mean MPRI for each coronary artery territory was also used in the analysis 

in case the mean MPRI diluted out a low MPRI from a small perfusion defect only 

affecting one or two of the myocardial segments of a coronary artery. The lowest mean 

Fermi deconvolution derived MPRI of the 621 coronary artery territories analysed by 

observer 1 was 1.6 (Median=1.57, SD=0.75, Range 0.001-4.19) and observer 2 was 

1.49 (Median=1.44, SD=0.72, Range 0.12-4.8). The Pearson Correlation Coefficient for 

obsrever 1 versus observer 2 was r=0.74 with p<0.0001. 

 

Assessing the limits of agreement using a Bland-Altman plot (Figure 4.17) show that 

spread of differences between observers is greater than that found when taking the mean 

MPRI per coronary artery territory. The mean difference between observers was 0.11 

with a standard deviation of 0.53. Figure 4.17 shows that most of the differences 

between observers lie between 0.11 and ±1.96xSD. Examining the limits of agreement 

between observers showed that observer 2 may be 0.93 below or 1.15 above observer 1. 
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Figure 4.17 - Difference in lowest mean Fermi deconvolution derived MPRI for each 

coronary artery territory per scan against the mean MPRI with reference lines showing 

the mean±1.96SD within which 95% of the differences lie. 
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We then examined the precision of the estimated limits of agreement. The standard error 

of the mean difference was calculated to be 0.021 with 620 DF and a t=1.97. The 95% 

confidence interval of the bias was 0.07 to 0.15. The standard error of the 95% limits of 

agreement was 0.036, therefore the 95% confidence intervals for the lower limit of 

agreement were narrow at -1.0 to -0.86 and for the upper limit of agreement were 1.08 

to 1.22. 

 

4.3.2.2 Fermi Deconvolution Derived MPRI versus FFR. 

Figure 4.18 shows a scatter plot of the Fermi Deconvolution derived lowest MPRI 

values for individual coronary artery territories along with the pressure wire measured 

FFR for that corresponding artery. Data from 95 of the 101 patients (94%) were 

included in this analysis. Artefact was the main reason for not including the MPRI data 
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from the 6 patients whose data was excluded. Occluded arteries were again given a FFR 

value of 0.4 to represent collateral flow. The Pearson’s correlation coefficient on this 

occasion was higher at 0.48 (p<0.0001) indicating a more linear incremental 

relationship than that encountered when taking the mean MPRI for each of the segments 

per coronary artery territory. 

 

Figure 4.18 - Scatterplot of Fermi deconvolution derived lowest mean MPRI for each 

coronary artery territory against the measured FFR for the corresponding coronary 

artery with a line of best fit. 
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Bearing in mind that the majority of previous studies compared MPRI with degree of 

stenosis as the gold standard, Figures 4.19 and 4.20 show scatterplots of degree of 

stenosis versus mean and lowest Fermi deconvolution derived MPRI with line of best 

fit. The Pearson’s correlation coefficient for this data was -0.38 using the mean MPRI 

and -0.47 for the lowest MPRI again indicating that as the degree of stenosis increases 

the MPRI falls. 
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Figure 4.19 - Scatterplot of Fermi deconvolution derived mean MPRI for each coronary 

artery territory against the QCA measured degree of stenosis (%) for the corresponding 

coronary artery with a line of best fit. 
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Figure 4.20 - Scatterplot of Fermi deconvolution derived lowest mean MPRI for each 

coronary artery territory against the QCA measured degree of stenosis (%) for the 

corresponding coronary artery with a line of best fit. 
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Correlations with other pressure wire derived haemodynamic parameters were made as 

for the maximum signal derived MPRI and are presented in table 4.14. Lowest MPRI 

per coronary territory has the best correlation coefficient of any these measurements. 

 

Table 4.14 - Pearson’s correlation coefficients for each of the pressure wire measured 

haemodynamic variables compared with Fermi deconvolution derived MPRI. 

 Mean MPRI Per 

Coronary Territory 

Lowest MPRI Per 

Coronary Territory 

Fractional Flow Reserve (FFR) 0.4 0.48 

Coronary Flow Reserve (CFR) 0.41 0.34 

Uncorrected Index of Microcirculatory 

Resistance (IMRuncorr) 

-0.15 -0.2 

Corrected Index of Microcirculatory 

Resistance (IMRcorr) 

0.22 0.10 

Coronary Flow (Qcorr) 0.17 0.18 

 

The receiver operator characteristic curve for Fermi deconvolution derived MPRI using 

both the mean MPRI for coronary artery territories and the lowest MPRI is shown in 

Figure 4.21. This provides a plot of sensitivity versus 1-specificity and allows us to 

select an optimum cut-off value of MPRI using an FFR of 0.75 as our gold standard cut 

off. The area under the curve for the mean MPRI per coronary territory was 0.73 

compared to 0.77 for the lowest MPRI per coronary territory. This indicates that the 

probability of a randomly chosen ischaemic coronary territory having a lower MPRI 

than a normally perfused territory is higher when we take the lowest MPRI per territory. 

The low MPRI curve is closest to the y-axis for the majority of its course again 

indicating using the low value is the most accurate. The asymptotic 95% confidence 
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intervals however overlap to a large extent (Mean MPRI – 0.67 to 0.79 and Lowest 

MPRI – 0.72 to 0.83) indicating that the real difference between these tests is small. 

Taking a mean MPRI cutoff of 2.41 gave a sensitivity of 83% and 1-specificity of 50% 

(Specificity = 50%). Using a cut-off value for the low MPRI of 1.70 gave a sensitivity 

of 90% and 1-specificity of 52% (Specificity = 48%). 

 

Figure 4.21 - Receiver Operator Characteristic (ROC) curve of mean Fermi 

deconvolution derived MPRI per coronary artery territory and lowest MPRI per 

coronary artery territory using an FFR cut-off of 0.75 as the gold standard for the 

diagnosis of coronary artery disease. 
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The distribution of Fermi deconvolution derived MPRI data are presented on Figure 

4.22. This shows that the degree of overlap of MPRI values between arteries with 

significant (FFR<0.75) and non-significant (FFR≥0.75) disease is less using the lowest 

MPRI value as opposed to the mean MPRI value per coronary artery territory. 
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Figure 4.22 - Boxplot comparing mean and lowest Fermi deconvolution derived MPRI 

values in patients with and without significant coronary artery disease defined as an 

FFR<0.75 highlighting the median MPRI, the interquartile range, spread of data 

excluding outliers and the outliers. 
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4.3.2.3 MPRI Interobserver Variability For All Myocardial Segments Using Maximum 

Signal Method 

In order to assess interobserver variability for the data produced from the MPRI 

analysis, we first looked at the mean MPRI for the complete myocardium (all 16 

segments) per patient scan. This analysis included all available scans including all pre 

and post revascularisation and pre and post medical therapy as well as those patients 

with normal coronary arteries. The mean MPRI for the 211 scans analysed by observer 

1 was 1.56 (Median=1.55, SD=0.30, Range 0.83-2.76) and observer 2 was 1.52 

(Median=1.50, SD=0.32, Range 0.84-2.67). The Pearson correlation coefficient for 

observer 1 versus observer 2 was r=0.87 with p<0.0001. 
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In order to examine the level of agreement between observers a Bland-Altman plot was 

created showing the difference between observers against their mean (Figure 4.23). This 

shows no relationship between measurement error and the mean values which we take 

to be the true mean MPRI for 16 segments per scan. In order to examine the 

measurement bias we calculated the mean difference between observers which was 

0.043 with a standard deviation of 0.16. As shown in figure 4.23 most of the differences 

between observers lie between 0.043 and ±1.96xSD. Examining the limits of agreement 

between observers showed that observer 2 may be 0.31 below or 0.36 above observer 1. 

 

Figure 4.23 - Difference in mean maximum signal derived MPRI for all 16 segments 

per scan against the mean MPRI with reference lines showing the mean±1.96SD within 

which 95% of the differences lie. 

2.52.01.51.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

Average Mean MPRI per Scan

D
iff

er
en

ce
 in

 M
ea

n 
M

PR
I p

er
 S

ca
n

Mean+1.96SD

Mean-1.96SD

 

Examining the precision of the estimated limits of agreement the standard error of the 

mean difference was calculated to be 0.011 with 210 DF and a t=1.97. The 95% 

confidence interval of the bias was 0.021 to 0.065. The standard error of the 95% limits 
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of agreement was 0.019, therefore the 95% confidence intervals for the lower limit of 

agreement were -0.35 to -0.27 and for the upper limit of agreement were 0.32 to 0.40.  

The mean MPRI for the 633 coronary artery territories analysed by observer 1 was 1.56 

(Median=1.56, SD=0.36, Range 0.42-3.15) and observer 2 was 1.52 (Median=1.51, 

SD=0.38, Range 0.39-3.62). The Pearson correlation coefficient for observer 1 versus 

observer 2 was r=0.79 with p<0.0001. 

 

On the Bland-Altman plot for each coronary territory per scan there is no relationship 

between measurement error and the mean values which we take to be the true mean 

MPRI. In order to examine the measurement bias we calculated the mean difference 

between observers which was 0.043 with a standard deviation of 0.24. As shown in 

figure 4.24 most of the differences between observers lie between 0.043 and ±1.96xSD. 

Examining the limits of agreement between observers showed that observer 2 may be 

0.43 below or 0.51 above observer 1. 
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Figure 4.24 - Difference in mean maximum signal derived MPRI for each coronary 

artery territory per scan against the mean MPRI with reference lines showing the 

mean±1.96SD within which 95% of the differences lie. 
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Examining the precision of the estimated limits of agreement the standard error of the 

mean difference was calculated to be 0.009 with 632 DF and a t=1.97. The 95% 

confidence interval of the bias was 0.025 to 0.061. The standard error of the 95% limits 

of agreement was 0.015, therefore the 95% confidence intervals for the lower limit of 

agreement were -0.46 to -0.4 and for the upper limit of agreement were 0.48 to 0.54.  

 

The lowest mean MPRI within each of the coronary artery territories for the 633 

coronary artery territories analysed by observer 1 was 1.16 (Median=1.23, SD=0.40, 

Range 0-2.47) and observer 2 was 1.14 (Median=1.19, SD=0.39, Range 0-2.65). The 

Pearson correlation coefficient for observer 1 versus observer 2 was r=0.71 with 

p<0.0001. 
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A Bland-Altman plot of the mean lowest MPRI for each coronary territory per scan is 

presented in figure 4.25 showing no relationship between measurement error and the 

mean values which we take to be the true mean MPRI. In order to examine the 

measurement bias we calculated the mean difference between observers which was 

0.019 with a standard deviation of 0.3. As shown in figure 4.25 most of the differences 

between observers lie between 0.019 and ±1.96xSD. Examining the limits of agreement 

between observers showed that observer 2 may be 0.57 below or 0.61 above observer 1. 

 

Figure 4.25 - Difference in lowest mean maximum signal derived MPRI for each 

coronary artery territory per scan against the mean MPRI with reference lines showing 

the mean±1.96SD within which 95% of the differences lie. 
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Examining the precision of the estimated limits of agreement the standard error of the 

mean difference was calculated to be 0.012 with 632 DF and a t=1.97. The 95% 

confidence interval of the bias was -0.005 to 0.043. The standard error of the 95% limits 

of agreement was 0.021, therefore the 95% confidence intervals for the lower limit of 

agreement were -0.61 to -0.53 and for the upper limit of agreement were 0.57 to 0.65. 
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4.3.2.4 Maximum Signal Derived MPRI versus FFR. 

Figure 4.26 shows a scatter plot of the maximum signal derived MPRI values for 

individual coronary artery territories along with the FFR for that corresponding artery. 

The MPRI value for this analysis was obtained by taking the mean MPRI of those 

coronary segments for each of the coronary arteries and thereafter taking the mean of 

these values for the two observers. This provided us with three measurements per 

patient as we only used the initial MRI scan from each patient. Data from 97 of the 101 

patients (96%) was included in this analysis. Artefact was the main reason for not 

including the MPRI data from the 4 patients whose data was excluded. Occluded 

arteries were given a FFR value of 0.4 taking into account that there will be a degree of 

collateral flow to the myocardium supplied by occluded arteries. As shown in Figure 

4.26 there is no accurate straight line of plots comparing MPRI and FFR. The Pearson’s 

correlation coefficient r is 0.36 with p<0.0001. The direction of the line indicates that 

MPRI increases with increasing FFR as one would expect. 
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Figure 4.26 - Scatterplot of maximum signal derived mean MPRI against measured 

FFR for the corresponding coronary artery with a line of best fit. 
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We also examined the lowest recorded MPRI for each of the segments within a 

coronary artery territory and compared these values with the recorded FFR for the 

corresponding coronary artery. Figure 4.27 shows a further scatterplot of the lowest 

MPRI for each coronary territory with the corresponding FFR. The Pearson’s 

correlation coefficient on this occasion was higher at 0.45 (p<0.0001) indicating a more 

linear relationship than that encountered when taking the mean MPRI for each of the 

segments per coronary artery territory. Again as in Figure 4.26, as FFR increases so 

does the MPRI as expected. 
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Figure 4.27 - Scatterplot of maximum signal derived lowest mean MPRI for each 

coronary artery territory against the measured FFR for the corresponding coronary 

artery with a line of best fit. 
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Accepting that taking the lowest MPRI value provides the best degree of correlation 

with FFR we also plotted the mean %DS as measured by QCA with the mean lowest 

obtained FFR for each of the coronary artery territories. These data are shown on Figure 

4.28 again with a line of best fit. The Pearson’s correlation coefficient for these data 

was the same as that obtained for FFR at -0.45 indicating that as the degree of stenosis 

increases the MPRI falls as one would expect. 
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Figure 4.28 - Scatterplot of maximum signal derived lowest mean MPRI for each 

coronary artery territory against the QCA measured degree of stenosis (%) for the 

corresponding coronary artery with a line of best fit. 
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We made a number of comparisons with the other pressure wire derived measurements 

with the maximum signal derived MPRI. No parameter correlated better with MPRI 

than FFR. These data are presented in table 4.15. 
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Table 4.15 - Pearson’s correlation coefficients for each of the pressure wire measured 

haemodynamic variables compared with maximum signal derived MPRI. 

 Mean MPRI Per 

Coronary Territory 

Lowest MPRI Per 

Coronary Territory

Fractional Flow Reserve (FFR) 0.36 0.45 

Coronary Flow Reserve (CFR) 0.3 0.2 

Uncorrected Index of Microcirculatory 

Resistance (IMRuncorr) 
-0.29 -0.27 

Corrected Index of Microcirculatory 

Resistance (IMRcorr) 
0.15 0.07 

Coronary Flow (Qcorr) 0.22 0.19 

 

A receiver operator characteristic curve has been drawn for the maximum signal derived 

MPRI using both the mean MPRI for coronary artery territories and the lowest MPRI as 

shown in Figure 4.29. This provides a plot of sensitivity versus 1-specificity and allows 

us to select an optimum cut-off value of MPRI using an FFR of 0.75 as our gold 

standard cut off. The area under the curve for the mean MPRI per coronary territory was 

0.71 compared to 0.74 for the lowest MPRI per coronary territory. The low MPRI curve 

is further away from the reference line for the majority of its course again indicating 

using the low value is more accurate which is similar to that encountered with the Fermi 

deconvolution method.. The asymptotic 95% confidence intervals however overlap to a 

large extent (Mean MPRI – 0.648 to 0.771 and Lowest MPRI – 0.676 to 0.796) 

therefore the difference between the tests is marginal. Taking a mean MPRI cutoff of 

1.57 gave a sensitivity of 82% and 1-specificity of 47% (Specificity = 53%). Using a 

cut-off value for the low MPRI of 1.22 gave a sensitivity of 82% and 1-specificity of 

48% (Specificity = 52%).  
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Figure 4.29 - Receiver Operator Characteristic (ROC) curve of mean MPRI per 

coronary artery territory and lowest MPRI per coronary artery territory using an FFR 

cut-off of 0.75 as the gold standard for the diagnosis of coronary artery disease. 
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The distribution of the maximum signal derived MPRI data are presented on Figure 

4.30 showing considerable overlap between the MPRI values in those arteries with 

significant coronary artery disease (FFR<0.75) and those with non-significant disease 

(FFR≥0.75). The considerable overlap exists when you take either the mean MPRI per 

coronary artery territory or the lowest MPRI per territory. 
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Figure 4.30 - Boxplot comparing mean and lowest MPRI values in patients with and 

without significant coronary artery disease defined as an FFR<0.75 highlighting the 

median MPRI, the interquartile range, spread of data excluding outliers and the outliers. 
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4.3.2.5 MPRI Interobserver Variability For All Myocardial Segments Using Upslope 

Gradient Method 

Interobserver variability was first assessed by calculating MPRI by taking the mean of 

all myocardial segments. The mean MPRI for the 200 scans analysed by observer 1 was 

2.21 (Median=2.09, SD=0.71, Range 0.72-4.41) and for observer 2 was 2.26 

(Median=2.14, SD=0.8, Range 0.76-4.71). The Pearson correlation coefficient for 

observer 1 versus observer 2 was r=0.88 with p<0.0001. 

 

We assessed the level of agreement between observers using a Bland-Altman plot 

(Figure 4.31). This confirms no relationship between measurement error and the mean 

values which we take to be the true mean MPRI for 16 segments per scan. The mean 
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difference between observers was -0.058 with a standard deviation of 0.38. As shown in 

figure 4.31, most of the differences between observers lie between -0.058 and 

±1.96xSD. The limits of agreement between observers showed that observer 2 may be -

0.80 below or 0.69 above observer 1. 

 

Figure 4.31 - Difference in upslope gradient derived MPRI for all 16 segments per scan 

against the mean MPRI with reference lines showing the mean±1.96SD within which 

95% of the differences lie. 
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The precision of the estimated limits of agreement gave a standard error of the mean 

difference of 0.027 with 199 DF and t=1.97. The 95% confidence interval of the bias 

was -0.111 to -0.005. The standard error of the 95% limits of agreement was 0.046, 

therefore the 95% confidence intervals for the lower limit of agreement were -0.89 to -

0.71 and for the upper limit of agreement were 0.59 to 0.78. 

 

The mean MPRI for the 600 coronary artery territories analysed by observer 1 was 2.2 

(Median=2.08, SD=0.78, Range 0.24-4.63) and observer 2 was 2.26 (Median=2.17, 
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SD=0.87, Range 0.39-5.79). The Pearson correlation coefficient for observer 1 versus 

observer 2 was r=0.83 with p<0.0001. 

 

The Bland-Altman plot for each coronary territory per scan shows no relationship 

between measurement error and the mean values which we take to be the true mean 

MPRI. Looking at the measurement bias we calculated the mean difference between 

observers of -0.061 with a standard deviation of 0.48. As shown in figure 4.32 most of 

the differences between observers lie between -0.061 and ±1.96xSD. Examining the 

limits of agreement between observers showed that observer 2 may be -1.00 below or 

0.88 above observer 1. 

 

Figure 4.32 - Difference in mean upslope gradient derived MPRI for each coronary 

artery territory per scan against the mean MPRI with reference lines showing the 

mean±1.96SD within which 95% of the differences lie. 
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Examining the precision of the estimated limits of agreement, the standard error of the 

mean difference was 0.019 with DF=599 and t=1.97. The 95% confidence interval of 
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the bias was -0.098 to -0.061. The standard error of the 95% limits of agreement was 

0.032, therefore the 95% confidence intervals for the lower limit of agreement were -

1.06 to -0.94 and for the upper limit of agreement were 0.82 to 0.94. 

 

The lowest mean MPRI of the segments within each of the coronary artery analysed by 

observer 1 was 1.56 (Median=1.55, SD=0.71, Range 0-4.24) and observer 2 was 1.62 

(Median=1.58, SD=0.80, Range 0.02-4.30). The Pearson correlation coefficient for 

observer 1 versus observer 2 was r=0.77 with p<0.0001. 

 

A Bland-Altman plot of the mean lowest MPRI for each coronary territory per scan is 

presented in figure 4.33 showing no relationship between measurement error and the 

mean values which we take to be the true mean MPRI. The mean difference between 

observers was -0.053 with a standard deviation of 0.53. As shown in figure 4.33, most 

of the differences between observers lie between -0.053 and ±1.96xSD. Examining the 

limits of agreement between observers showed that observer 2 may be -1.08 below or 

0.98 above observer 1. 
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Figure 4.33 - Difference in lowest mean upslope gradient derived MPRI for each 

coronary artery territory per scan against the mean MPRI with reference lines showing 

the mean±1.96SD within which 95% of the differences lie. 
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Examining the precision of the estimated limits of agreement, the standard error of the 

mean difference was 0.021 with DF=599 and t=1.97. The 95% confidence interval of 

the bias was -0.094 to -0.012. The standard error of the 95% limits of agreement was 

0.036, therefore the 95% confidence intervals for the lower limit of agreement were -

1.15 to -1.01 and for the upper limit of agreement were 0.91 to 1.05. 

 

4.3.2.6 Upslope Gradient Derived MPRI versus FFR. 

The mean MPRI per coronary artery territory from the two observers with 

corresponding FFR is shown on figure 4.34. The data from 273 arteries is included in 

this figure from 92 (91%) patients. Scan artefact was the main reason for not including 

the MPRI data from the 9 patients whose data was excluded. As in the preceding 

analyses occluded arteries were given a FFR value of 0.4. As with the other methods of 
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assessing MPRI, increasing MPRI does correlate with increasing FFR with a Pearson’s 

correlation coefficient r of 0.34 with p<0.0001. 

 

Figure 4.34 - Scatterplot of upslope gradient derived mean MPRI against FFR for the 

corresponding coronary artery with a line of best fit. 
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The lowest MPRI for each coronary territory was then compared with the FFR as shown 

on figure 4.35. The Pearson’s correlation coefficient was better at 0.47 (p<0.0001) 

indicating a more linear relationship than that encountered when taking the mean MPRI. 

Upslope gradient derived MPRI again increases with FFR. 
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Figure 4.35 - Scatterplot of upslope gradient derived lowest mean MPRI for each 

coronary artery territory against the measured FFR for the corresponding coronary 

artery with a line of best fit. 
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As for the other two methods of assessing MPRI we also plotted the mean degree of 

stenosis as measured by QCA with the mean and the lowest obtained FFR for each of 

the coronary artery territories. These data are shown on Figure 4.36 and 4.37 again with 

a line of best fit. The Pearson’s correlation coefficient when using the mean MPRI in 

the correlation was -0.33 and using the lowest MPRI was -0.46 indicating that with 

increasing degrees of stenosis the MPRI falls as was shown using the other two 

methods. 
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Figure 4.36 - Scatterplot of upslope gradient derived mean MPRI for each coronary 

artery territory against the QCA measured degree of stenosis (%) for the corresponding 

coronary artery with a line of best fit. 
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Figure 4.37 - Scatterplot of upslope gradient derived mean lowest MPRI for each 

coronary artery territory against the QCA measured degree of stenosis (%) for the 

corresponding coronary artery with a line of best fit. 
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Correlation data with the other haemodynamic parameters measured with the coronary 

pressure wire are shown in table 4.16. Lowest MPRI per coronary territory again 

appears to have the highest degree of correlation with FFR as has been shown with the 

other data. 
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Table 4.16 - Pearson’s correlation coefficients for each of the pressure wire measured 

haemodynamic variables compared with upslope gradient derived MPRI. 

 Mean MPRI Per 

Coronary Territory 

Lowest MPRI Per 

Coronary Territory 

Fractional Flow Reserve (FFR) 0.34 0.47 

Coronary Flow Reserve (CFR) 0.31 0.25 

Uncorrected Index of Microcirculatory 

Resistance (IMRuncorr) 
-0.09 -0.15 

Corrected Index of Microcirculatory 

Resistance (IMRcorr) 
0.32 0.27 

Coronary Flow (Qcorr) 0.09 0.13 

 

The receiver operator characteristic curve for upslope derived MPRI using both the 

mean MPRI for coronary artery territories and the lowest MPRI is shown in figure 4.38. 

The area under the curve for the mean MPRI per coronary territory was 0.71 compared 

to 0.77 for the lowest MPRI per coronary territory. As have been demonstrated using 

the aforementioned methods of assessing MPRI the lowest MPRI curve is further away 

from the reference line indicating using the low value is a more accurate test. The 

asymptotic 95% confidence intervals do partially overlap (Mean MPRI – 0.642 to 0.768 

and Lowest MPRI – 0.712 to 0.825) therefore the difference between the tests is not 

large. Taking a mean MPRI cutoff of 2.35 gave a sensitivity of 80% and 1-specificity of 

54% (Specificity = 46%). Using a cut-off value for the low MPRI of 1.68 gave a 

sensitivity of 84% and 1-specificity of 51% (Specificity = 49%).  
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Figure 4.38 - Receiver Operator Characteristic (ROC) curve of mean MPRI per 

coronary artery territory and lowest MPRI per coronary artery territory using an FFR 

cut-off of 0.75 as the gold standard for the diagnosis of coronary artery disease. 
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Boxplots of upslope gradient derived MPRI data are presented on Figure 4.39 showing 

the degree of overlap between the MPRI values in those arteries with significant 

coronary disease (FFR<0.75) and those with non-significant disease (FFR≥0.75). There 

is a lesser degree of overlap encountered when you take the lowest MPRI per coronary 

artery territory compared to the mean MPRI per territory. 
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Figure 4.39 - Boxplot comparing mean and lowest MPRI values in patients with and 

without significant coronary artery disease defined as an FFR<0.75 highlighting the 

median MPRI, the interquartile range, spread of data excluding outliers and the outliers. 
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4.3.2.7 Comparison of Maximum Signal, Fermi Deconvolution and Upslope Gradient 

Derived MPRI in the Diagnosis of Significant Coronary Artery Disease 

A comparison of the three methods of assessing MPRI was made using the data from 

those patients in whom measurement of the MPRI was obtainable using all of these 

methods and where FFR data was available for each of the coronary arteries where the 

MPRI was assessed. Data included in this analysis were provided from 92 of the 101 

(91%) patients in the study. From these patients, 273 arteries had a FFR measured and 

the MPRI calculated using the aforementioned three methods. In three patients only 2 

data points were obtained due to missing FFR measurements. Figure 4.40 shows 

receiver operator characteristic curves (ROC) for the mean MPRI calculated using each 

of the three methods. Of these three methods the mean Fermi deconvolution derived 

MPRI is farthest away from the reference line and therefore the best test. This is also 
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confirmed on table 4.17 where of these three methods, Fermi deconvolution derived 

MPRI has the largest area under the curve. However as shown on table 4.17 there is a 

large degree of overlap in the asymptotic 95% confidence intervals indicating that the 

differences between each of these tests is not substantial. 

 

Figure 4.40 - Receiver Operator Characteristic (ROC) curves for mean upslope gradient 

derived MPRI (Gradient Mean MPRI), maximum signal derived MPRI (Max Signal 

MPRI) and Fermi deconvolution derived MPRI (Fermi Mean MPRI) for the diagnosis 

of significant coronary artery disease as defined by a FFR cut-off of <0.75. 
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Table 4.17 - The area under the receiver operator characteristic (ROC) curves and the 

asymptotic 95% confidence intervals for each of the methods of assessing MPRI using 

either the mean MPRI or the lowest MPRI per coronary artery territory. 

Asymptotic 95% Confidence Interval 
MPRI Method 

Area Under 

Curve Lower Bound Upper Bound 

Gradient Mean MPRI 0.705 0.642 0.768 

Max Signal Mean MPRI 0.726 0.665 0.788 

Fermi Mean MPRI 0.741 0.681 0.801 

Gradient Lowest MPRI 0.769 0.712 0.825 

Max Signal Lowest MPRI 0.757 0.699 0.816 

Fermi Lowest MPRI 0.784 0.729 0.839 

 

A similar series of ROC curves is presented in figure 4.41 using the lowest MPRI value 

for each of the coronary artery territories using the 3 methods of assessing MPRI as 

shown above. As with the mean values of MPRI, Fermi deconvolution appears to be the 

best test when taking the lowest value of MPRI per coronary artery territory which is 

farthest away from the line of reference. This is again confirmed in table 4.17 where the 

lowest Fermi deconvolution MPRI has the largest area under the curve of the three 

methods assessed. As in the case of mean MPRI, there is a large degree of overlap in the 

asymptotic 95% confidence intervals again indicating a non-substantial difference 

between each of the three methods. 



 164

Figure 4.41 - Receiver Operator Characteristic (ROC) curves for mean lowest upslope 

gradient derived MPRI (Gradient Mean MPRI), maximum signal derived MPRI (Max 

Signal MPRI) and Fermi deconvolution derived MPRI (Fermi Mean MPRI) for the 

diagnosis of significant coronary artery disease as defined by a  FFR cut-off of <0.75. 
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All 6 ROC curves of the methods of calculating MPRI are presented on the same graph 

for comparison in order to determine the best method overall (Figure 4.42). As shown 

the lowest Fermi deconvolution derived MPRI is farthest away from the line of 

reference whereas mean upslope gradient derived MPRI is the least accurate being 

closest to the reference line. This is confirmed by the areas under the ROC curves as 

presented in table 4.17. 
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Figure 4.42 - Receiver Operator Characteristic (ROC) curves for both the mean and 

lowest upslope gradient derived MPRI (Gradient Mean MPRI), maximum signal 

derived MPRI (Max Signal MPRI) and Fermi deconvolution derived MPRI (Fermi 

Mean MPRI) for the diagnosis of significant coronary artery disease as defined by a 

FFR cut-off of <0.75. 
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4.3.2.8 Post-Revascularisation Myocardial Perfusion Reserve Index (MPRI) 

4.3.2.8.1 Post-PCI MPRI Results 

The Fermi method with deconvolution was chosen for this analysis as this was shown in 

the preceeding data to have the largest area under the ROC curve. We measured the 

mean MPRI for all coronary artery territory segments, the lowest MPRI within in the 

coronary territories and a total mean MPRI for the whole heart (mean of all 16 segments 

per patient). This was recorded for the PCI patients pre-PCI, at 24 hours post-PCI and at 

4 weeks post-PCI. Figure 4.43 shows the mean MPRI per coronary territory for the 
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three time points. The mean MPRI value pre-PCI was 1.88 (Median–1.71, SD=0.73, IQ 

range-1.36-2.42) at 24 hours post-PCI was 2.45 (Median-2.38, SD=0.93, IQ range-1.81-

2.87) and at 4 weeks post-PCI was 2.5 (Median-2.42, SD=0.78, IQ range-2.00-2.97). 

The lowest MPRI value for each coronary territory which had PCI performed was also 

compared. The mean lowest MPRI value pre-PCI was 1.12 (Median-1.09, SD=0.54, IQ 

range 0.72-1.37) and at 24 hours had risen to 1.65 (Median-1.55, SD=0.76, IQ range 

1.03-2.14) and at 4 weeks was 1.79 (Median-1.67, SD=0.66, IQ range 1.34-2.23). 

 

Figure 4.43 - Boxplot showing the mean MPRI for those myocardial segments of the 

supplying coronary artery which has had PCI performed highlighting the median MPRI, 

the interquartile range, spread of data excluding outliers and the outliers. 
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The data for these three time points was analysed using a one way analysis of variance 

(ANOVA) with multiple comparisons being made with the Tukey 95% simultaneous 

confidence intervals test. The one way ANOVA was significant with p<0.0001. When 

the pre-PCI scan MPRI is subtracted from the 24 hour post-PCI MPRI the difference is 

significant as the confidence interval for the combination of means excludes zero (0.23, 



 167

0.57, 0.91). In addition the difference between the pre-PCI and 4 weeks post-PCI scan is 

also significantly different (0.28, 0.62, 0.96). There was no significant difference 

between the 24 hour post-PCI and 4 week post-PCI scan as the confidence interval 

included zero (-0.30, 0.05, 0.40). Similar results were found using the lowest MPRI per 

coronary territory with statistically significant differences being noted between the pre-

PCI scan and the 24 hour post-PCI scan and the pre-PCI and the 4 week post-PCI scan. 

We also looked at the mean total MPRI for the whole heart pre and post-PCI in order to 

perform comparisons with the CABG data. The mean total MPRI pre-PCI was 2.09 

(Median-1.99, SD=0.75, IQ range 1.52-2.54). This increased to 2.43 (Median-2.31, 

SD=0.82, IQ range 1.83-2.98) at 24 hours and to 2.39 (Median-2.48, SD=0.78, IQ range 

1.86-2.86) at 4 weeks post-PCI. These data are presented in figure 4.44. 

 

Figure 4.44 - Boxplot showing the mean total MPRI for all myocardial segments in 

patients who have had PCI performed highlighting the median MPRI, the interquartile 

range, spread of data excluding outliers and the outliers. 
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The mean total MPRI for the three time points was again compared using ANOVA 

however did not quite reach statistical significance with p=0.065. Using Tukey 95% 

simultaneous confidence intervals there was no significant difference between the pre-

PCI scan and 24 hours post-PCI scan (-0.04, 0.33, 0.70), or the pre-PCI scan and the 4 

weeks post-PCI scan (-0.07, 0.30, 0.66). However the lower confidence limit was very 

close to zero for both of these time points. Unsurprisingly there was therefore no 

significant difference between the 24 hour post-PCI and 4 weeks post-PCI scans (-0.41, 

-0.03, 0.35). 

 

4.3.2.8.2 Post-CABG MPRI Results 

The mean MPRI pre-CABG for the coronary territories revascularised was 1.65 

(Median-1.57, SD=0.61, IQ range 1.16-2.25). This increased to 2.15 (Median-2.10, 

SD=0.50, IQ range 1.77-2.59) at 4 weeks post-CABG. The mean difference was 0.5. 

This increase was statistically significant (p<0.0001), with 95% confidence intervals for 

the mean difference being 0.28 and 0.72. These data are displayed graphically on figure 

4.45. 
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Figure 4.45 - Boxplot showing the mean MPRI of revascularised coronary territories in 

patients who have had CABG performed highlighting the median MPRI, the 

interquartile range, spread of data excluding outliers and the outliers pre and post 

surgery. 
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The lowest MPRI per coronary artery territory was also recorded as was done for the 

PCI results. The mean lowest MPRI pre-CABG was 0.99 (Median-0.85, SD=0.51, IQ 

range 0.61-1.39) and post-CABG was 1.54 (Median-1.51, SD=0.48, IQ range 1.21-

1.94). The mean difference between pre and post-CABG was 0.55 which was 

significant with p<0.0001 and the 95% confidence intervals for the mean difference 

were 0.37 and 0.73. The mean total MPRI for all myocardial segments per patient was 

also recorded as was performed in the PCI patients. The mean total MPRI pre-CABG 

was 1.72 (Median-1.70, SD=0.51, IQ range 1.26 – 2.15) and 4 weeks post-CABG was 

2.14 (Median-2.02, SD=0.43, IQ range 1.93-2.57). The mean difference was 0.43 which 

was significant with p=0.013 and the 95% confidence intervals for the mean difference 

were 0.11 and 0.74. These data are shown on figure 4.46. 
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Figure 4.46 - Boxplot showing the mean total MPRI for all myocardial segments in 

patients who have had CABG performed highlighting the median MPRI, the 

interquartile range, spread of data excluding outliers and the outliers pre and post 

surgery. 
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4.3.2.8.3 MPRI Pre and Post-Revascularisation – PCI vs CABG 

As mentioned in the individual sections for PCI and CABG above, prior to 

revascularisation, the median MPRI for the CABG group was lower than that for the 

PCI group (1.57 vs 1.71) however this difference didn’t reach statistical significance 

(p=0.21, 95% confidence intervals for difference were 0.05 and 0.55). As patients 

requiring CABG tend to have more extensive coronary disease we may have suspected 

more of a difference between these two groups. There was also a trend towards lower 

lowest MPRI values for coronary territories in the CABG group (Median 0.85 vs 1.09), 

however this was also not significant (p=0.28, 95% confidence intervals for difference -

0.09 and 0.33). These data are displayed on figure 4.47. 
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Figure 4.47 - Boxplot showing the mean MPRI of coronary territories pre-PCI and 

CABG and the lowest MPRI value for both groups highlighting the median MPRI, the 

interquartile range, spread of data excluding outliers and the outliers. 
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Both the CABG and PCI groups had MRI scans performed at 4 weeks post 

revascularisation in order to allow a like with like comparison. Examining the mean 

MPRI for each of the revascularised coronary territories post-revascularisation revealed 

a significantly better result in the PCI group with a median MPRI of 2.42 vs 2.10 

(p=0.019, 95% confidence interval for the difference was 0.05 and 0.56). There was a 

trend to a higher lowest MPRI per revascularised coronary artery territory (Median 1.67 

vs 1.51) however this difference failed to reach significance (p=0.08). These results are 

shown on figure 4.48. 
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Figure 4.48 - Boxplots showing the mean and lowest MPRI of coronary territories post-

PCI and CABG highlighting the median MPRI, the interquartile range, spread of data 

excluding outliers and the outliers. 
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We also analysed the pre and post revascularisation mean MPRI for all 16 myocardial 

segments in both groups. Again there was a trend towards a higher MPRI value prior to 

revascularisation in the PCI group (Median 1.99 vs 1.70) with a p value of 0.1. This 

trend was also apparent post-revascularisation with the median MPRI post-PCI being 

2.48 compared to 2.01 post-CABG (p=0.18). These data are displayed on figure 4.49. 
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Figure 4.49 - Boxplots showing the mean MPRI for all 16 myocardial segments per 

patient pre and post-PCI and CABG highlighting the median MPRI, the interquartile 

range, spread of data excluding outliers and the outliers. 
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The final part of our comparison between PCI and CABG analysed the increase in 

MPRI pre and post-PCI, and pre and post-CABG. These data are presented in table 

4.18. The difference in mean increase in MPRI per coronary artery territory between the 

two groups was 0.13 (95% Confidence Interval -0.17 and 0.43) which was not 

significant (p=0.39). The difference in mean increase in the lowest MPRI per coronary 

artery territory between the two groups was 0.09 (95% Confidence Interval -0.17 and 

0.37) which was also not significant (p=0.48). Therefore as expected the difference in 

median increase in the mean total MPRI for the 16 coronary segments between the two 

groups was also not significant (p=0.92). The results of each of these analyses was 

insignificant, however perhaps one would expect a higher overall mean MPRI increase 

in the CABG group who would be expected to have achieved a greater rate of total 

arterial revascularisation. 
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Table 4.18 - The change in MPRI pre and post revascularisation for individual coronary 

territories (PCI mean and CABG mean), the lowest MPRI value for individual coronary 

artery territories (PCI lowest and CABG lowest) and the total mean for all 16 

myocardial segments per patient (PCI total and CABG total). 

 Number Mean Median SD Min Max 

PCI mean 61 0.63 0.58 0.78 -1.42 2.59 

CABG mean 37 0.49 0.49 0.67 -0.9 1.93 

PCI lowest 61 0.65 0.58 0.81 -1.24 3.45 

CABG lowest 37 0.55 0.55 0.53 -0.38 2.01 

PCI total 48 0.33 0.34 0.70 -1.19 2.01 

CABG total 13 0.43 0.25 0.53 -0.46 1.61 

 

4.4 LVEF, Mass and Volume Analysis 

LVEF, mass and volume were calculated by two observers blinded to all patient details. 

 

4.4.1 LVEF Analysis 

The mean ejection fraction for the 226 MRI scans performed by observer 1 was 69.0% 

(Median=69.7, SD=7.6, Range 42.6-85.8) and observer 2 was 69.3% (Median=70.1, 

SD=8.0, Range 46.1-88.4). The Pearson correlation coefficient for observer 1 versus 

observer 2 was r=0.83 with p<0.0001 as expected when the same scans are analysed by 

two observers. 
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In order to examine the level of agreement between observers a Bland-Altman plot was 

created showing the difference between observers against their mean (Figure 4.50). This 

shows that there is no relationship between measurement error and the mean value 

which we take to be the true LVEF. In order to examine the bias in measurements we 

calculated the mean difference between observers which was 0.36% with a standard 

deviation of 4.5%. As shown in figure 4.50 most of the differences between observers 

lie between 0.36% and ±1.96xSD. Examining the limits of agreement between 

observers showed that observer 2 may be 9.2% below or 8.5% above observer 1. 

 

Figure 4.50 - Difference in LVEF (%) against the mean LVEF with reference lines 

showing the mean±1.96SD within which 95% of the differences lie. 
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Examining the precision of the estimated limits of agreement the standard error of the 

mean difference was calculated to be 0.3 with 225 DF and a t=1.97. The 95% 

confidence interval of the bias was -0.95 to 0.23%. The standard error of the 95% limits 

of agreement was 0.51%, therefore the 95% confidence intervals for the lower limit of 
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agreement were narrow at -10.4 to -8.4% and for the upper limit of agreement were 7.7 

to 9.7%. 

 

4.4.2 Left Ventricular Myocardial Mass Analysis 

The mean LV myocardial mass for the 226 MRI scans performed by observer 1 was 

124.9g (Median=122, SD=31.3, Range 60.8-215.4) and observer 2 was 123.6g 

(Median=119.5, SD=31, Range 46.1-203.8). The Pearson correlation coefficient for 

observer 1 versus observer 2 was r=0.79 with p<0.0001. 

 

The mean difference between observers was 1.3g with a standard deviation of 20.2g. 

Figure 4.51 shows a Bland Altman plot of LV mass difference against mean LV mass. 

The limits of agreement were between -38.3 and +40.9g. The 95% confidence interval 

for the bias was -1.4 to 3.9g and the standard error of the 95% limits of agreement was 

2.3. The 95% confidence interval for the lower limit of agreement was -5.8 to 3.2g and 

the upper limit of agreement was -0.6 to 8.4g. 
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Figure 4.51 - Difference in LV mass against the mean LV mass with reference lines 

showing the mean±1.96SD within which 95% of the differences lie. 
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4.4.3 Left Ventricular End Diastolic Volume (LVEDV) Analysis 

The mean LVEDV for the 226 MRI scans performed by observer 1 was 137.6ml 

(Median=137.8, SD=28.0, Range 74.8-212.7) and observer 2 was 126.2ml 

(Median=125.6, SD=27.8, Range 67-208). The Pearson correlation coefficient for 

observer 1 versus observer 2 was r=0.93 with p<0.0001. 

 

The mean difference between observers was 11.4ml with a standard deviation of 10.5. 

Figure 4.52 shows a Bland Altman plot of LVEDV difference against mean LVEDV. 

The limits of agreement were between -9.2 and +32ml. The 95% confidence interval for 

the bias was 10.1 to 12.8ml and the standard error of the 95% limits of agreement was 

1.2. The 95% confidence interval for the lower limit of agreement was 7.7 to 12.5ml 

and the upper limit of agreement was 10.4 to 15.2ml.  



 178

Figure 4.52 - Difference in LVEDV against the mean LVEDV with reference lines 

showing the mean±1.96SD within which 95% of the differences lie. 

2202001801601401201008060

50

40

30

20

10

0

-10

-20

Average LVEDV by Two Observers (mls)

D
iff

er
en

ce
 in

 L
V

ED
V

 (m
ls)

 (O
bs

1 
- O

bs
2)

-9.2

32

 

 

4.4.4 Left Ventricular End Systolic Volume (LVESV) Analysis 

The mean LVESV for the 226 MRI scans performed by observer 1 was 43.3ml 

(Median=41.3, SD=15.5, Range 15.9-93.9) and observer 2 was 39.3ml (Median=36.5, 

SD=15.4, Range 11.3-83.6). The Pearson correlation coefficient for observer 1 versus 

observer 2 was r=0.91 with p<0.0001. 

 

The mean difference between observers was 3.9ml with a standard deviation of 6.4. 

Figure 4.53 shows a Bland Altman plot of LVESV difference against mean LVESV. 

The limits of agreement were between -8.6 and +16.4ml. The 95% confidence interval 

for the bias was 3.1 to 4.8ml and the standard error of the 95% limits of agreement was 

0.7. The 95% confidence interval for the lower limit of agreement was 1.6 to 4.6ml and 

the upper limit of agreement was 3.3 to 6.3ml.  



 179

Figure 4.53 - Difference in LVESV against the mean LVESV with reference lines 

showing the mean±1.96SD within which 95% of the differences lie. 

908070605040302010

20

10

0

-10

-20

Average LVESV by Two Observers (mls)

D
iff

er
en

ce
 in

 L
V

ES
V

 (m
ls)

 (O
bs

1 
- O

bs
2)

Mean-1.96SD

Mean+1.96SD

 

 

4.4.5 LV Volume Measurements in PCI, CABG, Medical and Normal Patients 

For this analysis an average measurement was taken from observer 1 and observer 2. 

All patients had an MRI scan performed prior to the coronary angiogram. A boxplot of 

all 4 patient groups (normal, PCI, CABG and medical therapy) initial LV ejection 

fraction results are presented on Figure 4.54. The mean and standard deviation results 

are contained in table 4.19. 
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Figure 4.54 - Boxplot comparing initial ejection fractions (EF) in the normal, PCI, 

CABG and medical therapy groups highlighting the median EF, the interquartile range, 

spread of data excluding outliers and the outliers. 
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Those patients who had PCI performed had a repeat scan at 24 hours post-PCI and also 

at 4 weeks post PCI to examine the impact PCI had on ejection fraction, myocardial 

mass and LV volumes. Figure 4.55 shows the mean change in ejection fraction (EF) 

following PCI. 57 patients had PCI performed with 54 (95%) attending for the 24 hour 

scan and 52 (91%) attending for the 4 week scan. Of the 3 patients who declined the 24 

hour scan, one had ongoing chest pain following his PCI, one had a migraine and a 

further patient declined due to claustrophobia. Of the 5 patients who refused the 4 week 

scan, 2 declined without giving reason, 2 complained of claustrophobia and one patient 

had substantial weight gain between scans and would have been unable to fit within the 

bore of the scanner. 
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Figure 4.55 - Boxplot showing change in ejection fraction (EF) pre and post-PCI 

highlighting the median EF, the interquartile range, spread of data excluding outliers 

and the outliers. 
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ANOVA was used to compare the mean ejection fraction between these three time 

points. The overall p value revealed a significant difference between the scans with 

p=0.003. Using Tukey 95% simultaneous confidence intervals revealed at significant 

difference between the pre-PCI scan and the 24 hour post-PCI scan with the confidence 

intervals excluding zero (1.6, 5.0, 8.4). The comparison between the pre-PCI scan and 

the 4 week scan was close to being significant however did include zero (-0.5, 2.9, 6.3). 

There was no significant difference between the 24 hour and 4 week post-PCI scans (-

5.5, -2.1, 1.3). The mean and median ejection fractions are presented on table 4.19. 
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Table 4.19 - Descriptive data for ejection fraction (%) in normals, pre-PCI, 24 hours 

post-PCI, 4 weeks post-PCI, pre-CABG, 4 weeks post-CABG, pre-medical therapy and 

3 months post medical therapy groups. 

 No Mean Median SD 

Normal 20 69.1 69.6 7.5 

Pre-PCI 57 66.7 67.5 7.3 

24h Post-PCI 54 71.9 67.5 7.1 

4 Weeks Post-PCI 52 69.6 67.5 7.1 

Pre-CABG 15 69.6 69.5 5.3 

4 Weeks Post-CABG 14 68.8 69.8 7.4 

Pre-Med Rx 9 66.8 69.0 10.1 

3 Months Post-Med Rx 5 65.8 69.6 10.4 

 

The ejection fraction data for the CABG patients pre and 4 weeks post surgery are 

presented in figure 4.56. Of the 15 patients who underwent CABG only one patient 

declined to have the 4 week repeat cardiac MRI scan. This patient did not feel well 

enough following his CABG to consider this. As indicated in table 4.19 there is no 

significant difference in ejection fraction pre and post CABG. 
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Figure 4.56 - Boxplot showing change in ejection fraction (EF) pre and post-CABG 

highlighting the median EF, the interquartile range and spread of data. 
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Of the 9 patients whose coronary artery disease was only felt to be suitable for treatment 

by medical therapy only 5 (56%) attended for a second MRI scan at 3 months post 

coronary angiography. Three patients refused without giving reason and one patient 

who tolerated his first scan developed claustrophobia at the start of the repeat scan. 

Figure 4.57 shows the change in ejection fraction between the two scans and table 4.19 

confirms that there is no significant difference in ejection fraction pre and following 

three months of medical therapy.  
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Figure 4.57 - Boxplot showing change in ejection fraction (EF) pre and 3 months post-

medical therapy highlighting the median EF, the interquartile range and spread of data. 
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We then compared the ejection fractions of those patients who underwent PCI and those 

who had CABG. There was no significant difference between the two groups prior to 

revascularisation (T=-1.73, DF=29, p=0.09). In addition myocardial mass was not 

significantly different between groups (T=0.63, DF=32, p=0.5) as was end-diastolic 

volume (T=0.22, DF=18, p=0.8), end-systolic volume (T=0.86, DF=21, p=0.4) and 

cardiac output ((T=-0.22, DF=21, p=0.8). Descriptive Data showing myocardial mass, 

end diastolic volume, end systolic volume and cardiac output are presented in table 

4.20. 
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Table 4.20 - Descriptive data of the myocardial mass, end diastolic volume, end 

systolic volume and cardiac output for the 4 groups of patients (normal, PCI, CABG 

and medical therapy). 

 Number Parameter Mean Median SD Min Max 

Mass 117.2 117.0 31.1 53.5 183.9 

EDV 137.3 130.8 37.2 76.8 203.0 

ESV 43.0 38.6 17.3 16.7 75.9 
Normal 20 

CO 5.5 4.9 1.5 3.1 8.3 

Mass 121.8 117.7 30.1 66.5 191.7 

EDV 135.8 139.1 27.1 87.3 185.8 

ESV 45.4 42.0 15.0 15.9 79.1 
PCI 57 

CO 5.3 5.3 1.3 2.6 8.3 

Mass 117.8 112.9 19.9 96.9 159.2 

EDV 133.6 136.0 36.7 79.6 200.8 

ESV 41.5 40.3 15.9 18.1 67.8 
CABG 15 

CO 5.3 4.9 1.3 3.3 7.9 

Mass 129.2 129.1 30.8 67.3 186.0 

EDV 149.1 149.8 29.9 104.7 196.1 

ESV 49.9 49.3 19.0 26.4 86.4 
Medical 9 

CO 5.6 5.7 1.2 3.7 7.4 

 

Interestingly there was no statistically significant difference in the ejection fractions at 4 

weeks post PCI and 4 weeks post CABG as shown in figure 4.58 and table 4.21. In 

addition there were no differences in myocardial mass, end diastolic volume, end 

systolic volume and cardiac output as presented in table 4.21. 
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Figure 4.58 - Boxplot showing the ejection fraction (EF) 4 weeks post-PCI and CABG 

highlighting the median EF, the interquartile range and spread of data. 
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Table 4.21 - Comparision of LV parameters at 4 weeks post-PCI and CABG with 

corresponding two sample T-test results. 

  Mean Median SD Min Max T/p value 

PCI 69.6 70.1 7.1 48.9 81.7 Ejection 

Fraction (%) CABG 68.8 69.8 7.4 52.7 79.6 

T=0.36 

P=0.73 

PCI 125.7 121.5 30.0 70.8 188.3 Myocardial 

Mass (g) CABG 125.8 115.1 27.1 84.5 171.3 

T=-0.02 

P=0.99 

PCI 130.9 131.2 23.4 88.1 189.2 End-Diastolic 

Volume (ml) CABG 125.8 122.5 25.6 84.6 177.1 

T=0.68 

P=0.5 

PCI 40.5 40.1 14.6 20.8 88.1 End-Systolic 

Volume (ml) CABG 39.6 34.2 13.8 20.7 67.6 

T=0.22 

P=0.83 

PCI 5.29 5.25 0.94 3.32 7.76 Cardiac 

Output (l/min) CABG 5.63 5.58 1.02 4.03 7.72 

T=-1.16 

P=0.26 
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4.5 Late Gadolinium Enhancement Mass Analysis 

The scans of 55 (96%) of the 57 patients who underwent PCI and 14 of 15 (93%) 

patients who had CABG were analysed for the mass of late gadolinium enhancement. 

Patients who didn’t attend for any of the follow up scans were excluded from this 

analysis. Of the PCI group, 54 (98%) of 55 scans at 24 hours post PCI were 

interpretable as were 51 (93%) of 55 scans at 4 weeks post PCI. CABG patients only 

had one follow up scan to attend at 4 weeks which all 14 attended. Therefore in total 

188 scans were analysed for the presence of late gadolinium enhancement by two 

blinded observers as documented in the methods section. 

 

4.5.1 Late Gadolinium Enhancement Mass Interobserver Variability 

The mean mass of late gadolinium enhancement in these 188 scans analysed by 

observer 1 was 2.45g (Median=0, SD=4.06, Interquartile Range 0.0-3.75) and observer 

2 was 2.27g (Median=0, SD=3.85, Interquartile Range 0.0-3.12). The Pearson 

correlation coefficient for observer 1 versus observer 2 was r=0.98 with p<0.0001. 

 

The mean difference between observers was 0.18g with a standard deviation of 0.83g. 

Figure 4.59 shows a Bland Altman plot of difference in LGE mass against mean LGE 

mass. The limits of agreement were between -1.45 and +1.81g. The 95% confidence 

interval for the bias was 0.06 to 0.3g and the standard error of the 95% limits of 

agreement was 0.1. The 95% confidence interval for the lower limit of agreement was -

1.65 to -1.25g and the upper limit of agreement was 1.61 to 2.01g. 
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Figure 4.59 - Difference in mass of late gadolinium enhancement (LGE) against the 

mean mass of LGE with reference lines showing the mean±1.96SD within which 95% 

of the differences lie. 

20151050

5

4

3

2

1

0

-1

-2

Mean Mass of LGE (g)

D
iff

er
en

ce
 in

 M
as

s 
of

 L
G

E 
(O

bs
1-

O
bs

2)

Mean+1.96SD

Mean-1.96SD

 

4.5.2 Mass of Late Gadolinium Enhancement – PCI v CABG group 

Prior to revascularisation 26 (47%) of the 55 PCI patients had evidence of late 

gadolinium enhancement (LGE) compared to 6 (43%) of the 14 CABG patients (chi 

square=0.09, p=0.77). The mean mass of LGE in the PCI group was 2.55g (Median=0, 

SD=4.2, Interquartile Range 0 – 4.83) compared to 1.47g in the CABG group 

(Median=0, SD=2.3, Interquartile Range 0 – 1.99). At 4 weeks post PCI 23 (45%) of the 

51 patients who attended for repeat MRI scanning had evidence of LGE compared to 10 

(71%) of the 14 CABG patients (chi square=3.0, p=0.08). The mean mass of LGE at 4 

weeks post PCI was 2.27g (Median=0, SD=3.9, Interquartile Range 0 – 3.68) and at 4 

weeks post CABG was 2.55g (Median=1.37, SD=3.5, Interquartile Range 0 – 3.03). 

These data are presented along with the pre-revascularisation data in figure 4.60. The 

mass of LGE pre and post-revascularisation was compared using the Mann-Whitney U 
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test due to the dataset being positively skewed, however there were no significant 

differences between the groups (p=0.65 and p=0.20 respectively). A line plot of the 

change in mass of LGE pre and post CABG for all 14 patients is presented on figure 

4.61 and for the 51 PCI patients is on figure 4.62. 

 

Figure 4.60 - Boxplot showing mass of late gadolinium enhancement (g) pre and post 

PCI and CABG highlighting the median mass, the interquartile range, spread of data 

excluding outliers and the outliers. 
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Figure 4.61 - Lineplot showing the change in mass of late gadolinium enhancement 

(LGE) pre and post CABG for each of the 14 patients who had a pre and post MRI scan 

performed. 
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Figure 4.62 - Lineplot showing the change in mass of late gadolinium enhancement 

(LGE) pre and 4 weeks post-PCI for each of the 51 patients who had a pre and post 

MRI scan performed. 
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We also looked at the change in mass of LGE between both groups by subtracting the 

mass of LGE pre-revascularisation from the post-revascularisation value. The mean 

difference in the PCI group was -0.12g (Median=0, SD=0.8, Interquartile Range 0 – 0) 

and for the CABG group was 1.08g (Median=0.11, SD=2.3, Interquartile Range -0.11 – 

1.38). There is a trend towards the development of more LGE following CABG than 

PCI however the difference between groups did not reach statistical significance 

(p=0.07). 

 

4.5.3 Comparison of Mass of Late Gadolinium Enhancement with Troponin 

We compared the measured change in mass of LGE between the 24 hour post-PCI scan 

and the pre-PCI scan and compared this with the measured 24 hour troponin 

measurement. No significant correlation was found to exist between these parameters 

for the 52 patients of 55 who had a troponin measurement performed (r=0.25, p=0.07). 

We found an even poorer correlation when we compared troponin with the change in 

mass of LGE from baseline to 4 weeks (r=-0.19, p=0.2). This may be due to thinning of 

recently infarcted myocardium due to myocyte necrosis, leading to a reduction in the 

measured mass of LGE. These data are presented on figure 4.63 with corresponding line 

of best fit. Comparisons were also made with the total mass of LGE measured at both 

24 hours and 4 weeks and again no significant correlation was found when compared 

with troponin values (r=0.08 and 0.06 respectively). This confirms that no relationship 

was found between the biochemical marker of myocyte necrosis (troponin) and the 

measured amount of LGE which has a number of causes including myocyte necrosis. 
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Figure 4.63 - Scatterplot of change in mass of late gadolinium enhancement (LGE) 

between the 4 week post PCI MRI and the pre PCI scan and the measured troponin I 

value at 24 hours post PCI. A line of best fit is also drawn. 
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4.5.4 Comparison of Mass of Delayed Enhancement with Number of Arteries Treated 

During PCI 

We then compared the change in measured mass of late gadolinium enhancement 

between the 4 week scan and baseline with the number of vessels to which PCI was 

performed using the Kruskal-Wallis test. This showed no significant change in the mass 

of LGE with increasing number of arteries being intervened upon at 24 hours post-PCI 

(H=2.1, p=0.35) and also at 4 weeks post-PCI (H=1.1, p=0.58). The number of patients 

who had 3 vessel PCI in this analysis was only 2 (4%) compared to 13 (25%) who had 2 

vessel PCI and 36 (71%) who had single vessel PCI. These results should therefore be 

treated with caution as larger numbers in the 2 and 3 vessel groups would be required 

for a more robust analysis. The data relating to the change in mass of LGE at 24 hours 

and 4 weeks post PCI are presented in table 4.22. 
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Table 4.22 - Change in mass of late gadolinium enhancement (LGE) at 24 hours and 4 

weeks depending on the number of arteries having undergone PCI. 

Change in Mass of LGE 

with MRI 

Number of Arteries 

Having PCI 
Mean(g) Median(g) SD 

1 0.08 0 0.87 

2 -0.35 0 1.19 24 Hours Post PCI 

3 0.18 0.18 0.25 

1 -0.05 0 0.49 

2 -0.33 0 1.37 4 Weeks Post PCI 

3 0.15 0.15 0.21 

 

4.5.5 New Late Gadolinium Enhancement at 24 Hours Post-PCI 

At 24 hours post-PCI new late gadolinium enhancement (>0.1g) occurred in 10 (19%) 

of 54 patients who attended for follow-up MRI scanning. Late gadolinium enhancement 

(LGE) was present on 25 (46%) scans pre-PCI and 27 (50%) scans post-PCI. Of the 10 

patients with new LGE, 8 (80%) had an increase from their pre-PCI scan and 2 (20%) 

developed new LGE having had none on their pre-PCI scan. The PCI patients were then 

divided into two groups according to whether or not they had new late gadolinium 

enhancement. The mean increase in LGE was 1.24g (95% Confidence Intervals 0.61 to 

1.87) in the new LGE group compared to -0.31g (95% Confidence Intervals -0.53 to -

0.09) in the group with no new LGE (p<0.0001). These data are represented in figure 

4.64. 
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Figure 4.64 - Change in mass of late gadolinium enhancement (LGE) in grams from 

pre-PCI to 24 hours post-PCI in the new LGE and no new LGE groups. 
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There was no significant difference in troponin levels between these two groups (p=0.5) 

with a median troponin level of 0.65 (SD=3.97) in the new LGE group compared to 

0.57 (SD=1.2). These data are presented in the boxplot figure 4.65. The Spearman’s 

rank correlation coefficient when comparing troponin with mass of new LGE was 0.03 

indicating no correlation. 
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Figure 4.65 - Boxplot of troponin values in patients with and without new late 

gadolinium enhancement (LGE) showing the median troponin level, the interquartile 

range, spread of data excluding outliers and the outliers. 
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We then compared the length of the lesion being treated and the length of stent 

deployed to see if these measures played a role in the development of new LGE. These 

data are shown in figure 4.66. The median lesion length was 20.6mm (SD=16.5) in 

those patients with new LGE compared to 17.8mm (SD=10.2) in those without. This 

difference was not significant with p=0.49. Spearman’s rho was 0.045 when comparing 

the mass of LGE with lesion length indicating no correlation. Stent length 

unsurprisingly produced similar results with a median length of 42.5mm (SD=22.9) in 

the new LGE group compared to 32mm (SD=32.3) in the no new LGE group. This 

difference was not significant with p=0.88. The Spearman’s rho was 0.11 when 

comparing stent length with mass of new LGE. 
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Figure 4.66 - Boxplots comparing lesion lengths and stent lengths in patients with and 

without new late gadolinium enhancement (LGE) showing the median length, the 

interquartile range, spread of data excluding outliers and the outliers. 
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4.5.6 New Late Gadolinium Enhancement at 4 Weeks Post-PCI 

Eight scans had evidence of new LGE at 4 weeks post-PCI. Only one of these patients 

did not have evidence of this on their 24 hour post-PCI scan. Two of the original 10 

patients with new LGE at 24 hours refused to have a third MRI scan and one patient’s 

mass of LGE returned to their pre-PCI level. Of these 8 patients with new LGE at 4 

weeks the mean increase in mass of new LGE was 0.81g (0.48 to 1.14) compared to -

0.28 (-0.51 to -0.05) in the no new LGE group. This difference was significant at 

p<0.0001 and is presented in figure 4.67. 
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Figure 4.67 - Boxplot of change in mass of late gadolinium enhancement (LGE) from 

pre-PCI to 4 weeks post-PCI in the new LGE and no new LGE groups. 
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As was the case at 24 hours there was no significant difference in troponin levels 

between these two groups (p=0.53) with a median troponin level of 0.47 (SD=0.57) in 

the new LGE group compared to 0.57 (SD=1.19). These data are presented in the 

boxplot figure 4.68. The Spearman’s rank correlation coefficient when comparing 

troponin with mass of new LGE was -0.12 indicating a very slight negative correlation 

which is unlikely to be relevant in this small group of patients. 
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Figure 4.68 - Boxplot of troponin values in patients with and without new late 

gadolinium enhancement (LGE) at 4 weeks post-PCI. 
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The length of lesion being treated and the length of stent deployed was then compared 

again to see if these parameters bore any relation to the development of new LGE. 

These data are shown in figure 4.69. The median lesion length was 24.7mm (SD=15.6) 

in those patients with new LGE compared to 17.5mm (SD=10.2) in those without. This 

difference did not quite reach statistical significance with p=0.07. Spearman’s rho was -

0.49 comparing the mass of LGE at 4 weeks with lesion length. This degree of 

correlation is surprising given that you would expect PCI of longer lesions to produce 

more LGE as opposed to the opposite. It is difficult to draw any meaningful conclusions 

from this small dataset. Stent length was longer in the new LGE group with a median 

length of 42.5mm (SD=22.3) compared to 32mm (SD=30.3) in the no new LGE group. 

This difference was not significant with p=0.62. The Spearman’s rho was exactly 0.0 

when comparing stent length with mass of new LGE indicating absolutely no 

correlation. This is therefore not in agreement with the lesion length correlation which 

in theory should be similar. 
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Figure 4.69 - A comparison of lesion lengths and stent lengths in patients with and 

without new late gadolinium enhancement (LGE) at 4 weeks post-PCI. 
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4.6 Quantitative Coronary Angiography 

QCA was performed on 334 coronary arteries by 2 independent observers blinded to the 

MRMPI scan results, pressure wire haemodynamic data and procedural outcome ie PCI, 

CABG, medical therapy or non-flow limiting coronary disease. Degree of stenosis (%), 

area of stenosis (%), minimal luminal diameter (mm), ideal diameter of vessel at 

stenosis (mm), reference vessel diameter (mm) and lesion length (mm) were all 

measured by QCA. The results from both observers were combined to create a mean 

value used in the following results. The overall mean degree of stenosis for all coronary 

arteries was 44.3% (SD=32.0, IQ range=19.1-67.4). The mean area of stenosis was 

58.6% (SD=35.2, IQ range=34.5-89.1). The overall mean reference vessel diameter was 

2.91mm (SD=0.6, IQ range=2.44-3.27). The mean ideal diameter at a stenosis was 

2.66mm (SD=0.54, IQ range=2.28-2.98). The mean minimal luminal diameter was 

1.48mm (SD=0.73, IQ range=0.99-1.89). The mean lesion length was 12.34mm 
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(SD=8.99, IQ range=6.82-17.21). There were 35 totally occluded coronary arteries. 

Sixty-four arteries were felt by both observers to have no angiographic coronary 

disease. A histogram showing the range in coronary disease severity by degree of 

stenosis is shown on figure 4.70. 

 

Figure 4.70 - Histogram of degree of stenosis for all 334 coronary arteries. 
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Interobserver variability of the measured degree of stenosis is highlighted on the Bland-

Altman plot figure 4.71. There was excellent agreement between observers with a 

correlation coefficient of 0.95 and p<0.0001. 
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Figure 4.71 - Difference in degree os stenosis (%) between observers against the mean 

degree of stenosis with reference lines showing the mean±1.96SD within which 95% of 

the differences lie. 
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The area of stenosis was also calculated for each of the coronary arteries. The range in 

mean results is shown on figure 4.72. A significant correlation was found between 

observers with a correlation coefficient of 0.95 and p<0.0001. 
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Figure 4.72 - Histogram of area of stenosis for all 334 coronary arteries. 
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The mean lesion length is another important QCA variable which was recorded. The 

ranges of lesion lengths are presented on figure 4.73. 

 

Figure 4.73 - Histogram of mean lesion length for all 334 coronary arteries. 
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On this occasion there was less agreement between the observers on the lengths of 

coronary artery lesions as shown on figure 4.74. The correlation coefficient was 0.5 

with p<0.0001 as before. 

 

Figure 4.74 - Difference in lesion length (mm) between observers against the mean 

lesion length with reference lines showing the mean±1.96SD within which 95% of the 

differences lie. 
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The reference vessel diameter of all coronaries was recorded where possible including 

occluded arteries. No reference vessel diameter was obtainable in arteries with an ostial 

occlusion. The differences in reference vessel diameters are presented in table 4.23. 
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Table 4.23 - Reference vessel diameters for each of the coronary arteries analysed by 

QCA. 

 No Mean Median SD Min Max 

LMS 7 3.85 3.57 1.09 2.91 6.06 

LAD 98 2.91 2.90 0.50 2.11 4.83 

LCx 56 2.93 2.99 0.55 1.29 4.18 

OM 44 2.51 2.41 0.43 1.72 3.43 

RCA 94 3.06 3.08 0.63 1.87 4.78 

D1 6 2.43 2.38 0.48 1.81 3.13 

IM 8 2.48 2.43 0.32 2.14 2.93 

LPDA 14 3.06 3.20 0.62 1.96 4.11 
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4.7 Coronary Pressure Wire Results 

4.7.1 Fractional Flow Reserve (FFR) 

The FFR was recorded in 260 coronary arteries. The spread of results are demonstrated 

in the histogram (Figure 4.75) below. This histogram does not include occluded arteries 

where the pressure wire was unable to cross the areas of occlusion. 

 

Figure 4.75 - Histogram of FFR results in the 260 coronary arteries. 
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The median FFR was 0.88 with a mean of 0.81 (SD=0.19; Interquartile range 0.71-

0.95). Sixty-nine arteries had a measured FFR<0.75 whereas 191 arteries had an 

FFR≥0.75. Of the 101 patients the FFR was obtained in 4 arteries per patient in 5 (5%) 

cases, 3 arteries in 63 (62%) cases, 2 arteries in 22 (22%) cases, 1 artery in 7 (7%) cases 

and no FFR values were obtained in 4 (4%) cases. FFR results were obtained from 90 

(34.6%) left anterior descending coronary arteries, 45 (17.3%) left circumflex arteries, 

38 (14.6%) obtuse marginal branches, 65 (25%) right coronary arteries, 6 (2.3%) 1st 

diagonal branches, 8 (3.1%) left posterior descending arteries and 8 (3.1%) intermediate 
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arteries. There were 35 completely occluded arteries including 18 right coronary 

arteries, 10 left circumflex / obtuse marginal coronary arteries, 5 left anterior 

descending coronary arteries and 2 left posterior descending arteries. Five arteries were 

sub-totally occluded including 3 right, 1 left anterior descending and 1 left circumflex 

coronary arteries. Three patients had severe left main stem disease and FFR was not 

measured to avoid any risk associated with crossing these lesions with a wire. A further 

7 arteries had severe angiographically significant disease which was clearly significant 

but again not crossed with the pressure wire. One patient with angiographically normal 

coronary arteries did not have FFR measurements made due to a very abnormal take-off 

of both arteries making selective cannulation of the coronary ostia difficult. Only 2 data 

points were obtainable in three patients. In one patient the left circumflex artery was not 

identified but there was no lateral perfusion on the perfusion MRI. The other two 

patients had very small non-dominant RCA’s which were not wired. In the final data 

analysis where only three coronary territories per patient were included, 121 arteries had 

a FFR <0.75 (including occluded and subtotally occluded arteries) and 179 arteries had 

FFR ≥0.75. A grey zone is known to exist between FFR values of ≥0.75 and ≤0.8 which 

may represent lesions capable of inducing myocardial ischaemia. In our study 26 

coronary arteries fell into this group. 

 

4.7.2 Relationship Between FFR and Resting Pd/Pa 

There has been some debate relating to whether or not adenosine stress is necessary if 

the resting Pd/Pa is above or below a certain threshold. Table 4.24 presents our data 

with resting Pd/Pa in the left hand column and the chances of reaching either the 

FFR≤0.8 cut-off of the grey zone or the FFR<0.75 cut-off which was used in most of 

the original FFR studies. Interestingly if you have a resting Pd/Pa of between 0.95 and 
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1.0, none of the 158 arteries studied reached an FFR<0.75. As the resting Pd/Pa value 

decreases an increasing proportion of lesions exhibit an ischaemic FFR value. 

 

Table 4.24 - Data relating to the achieved FFR depending on the pre-adenosine Pd/Pa 

measurement. This shows the absolute number and % of arteries that achieved an 

FFR≤0.8 and FFR<0.75 depending on the pre-adenosine Pd/Pa. 

Resting 

Pd/Pa 

Arteries 

(n) 

Arteries 

FFR 

≤0.8 

Arteries 

FFR 

>0.8 

% 

Reaching 

≤0.8 

Arteries 

FFR 

<0.75 

Arteries 

FFR 

≥0.75 

% 

Reaching 

<0.75 

0.95 – 1.0 158 4 154 2.6 0 158 0 

0.9 – 0.94 57 12 45 21.1 3 54 5.3 

0.85 – 0.89 24 16 8 66.7 9 15 37.5 

0.81 – 0.84 10 8 2 80 7 3 70 

0.75 – 0.8 10 - - - 8 2 80 
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4.7.3 Coronary Flow Reserve (CFR) 

CFR was measured in 250 arteries during the initial microvascular function assessment. 

The mean CFR was 2.45 and the median was 2.2 (SD=1.32; Interquartile Range 1.49 – 

3.16). A histogram of CFR measurements is shown in Figure 4.76. 

 

Figure 4.76 - Histogram of CFR measurements. 
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The CFR was recorded in 4 coronary arteries in 4 (4%) patients, 3 coronary arteries in 

57 (56%) patients, 2 coronary arteries in 27 (27%) patients, 1 coronary artery in 9 (9%) 

patients and in none of the coronary arteries in 4 (4%) patients (three left main stem 

stenoses and one patient with poor guide catheter engagement). The location of the 

arteries in which CFR was measured is indicated in the pie chart figure 4.77. 

Interestingly the recorded CFR was less than 1 in 26 arteries which will be discussed 

later in the discussion (chapter 5.4). 
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Figure 4.77 - Pie chart demonstrating those arteries in which the CFR was measured 

(numbers and % of total arteries interrogated). 
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4.7.4 Index of Microcirculatory Resistance (IMR) 

The IMR was recorded in 231 coronary arteries. These values were not corrected for 

contributions from collateral flow as coronary wedge pressure values were only 

obtained for those arteries which had PCI performed. A corrected IMR was obtained for 

43 arteries in which distal coronary / wedge pressure was obtained. A histogram of 

uncorrected IMR measurements is shown in figure 4.78. 
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Figure 4.78 - Histogram showing the distribution of uncorrected IMR readings. 
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The mean uncorrected IMR was 21.8mmHgs-1 and the median was 18.4mmHgs-1 

(SD=12.4, Interquartile Range 12.8 – 26.2). The distribution of the coronary arteries 

from which these results were obtained is shown on the pie chart Figure 4.79. 

 

Figure 4.79 - Pie chart of arteries from which uncorrected IMR values were obtained. 
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Uncorrected IMR results were obtained from 4 coronary arteries in 2 (2%) patients, 3 

arteries in 54 (53%) patients, 2 arteries in 27 (27%) patients, 1 artery in 7 (7%) patients 

and from no arteries in 12 (12%) patients. A corrected IMR was obtained for 43 

coronary arteries with a mean value of 15.5mmHgs-1 and a median of 13.5mmHgs-1 

(SD=8.9, Interquartile range 9.6 – 20.8). Figure 4.80 shows the change in IMR when 

this is corrected for the wedge pressure. Following logarithmic transformation of this 

data the difference between uncorrected and corrected IMR results was significant 

(paired T=5.69, p<0.0001) 

 

Figure 4.80 - Uncorrected and corrected IMRs when coronary wedge pressure is taken 

into account in individual arteries. 
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4.8 Troponin Levels Post-Percutaneous Coronary Intervention 

Troponin I levels were measured 24 hours post-PCI in 53 out of the 57 (93%) patients 

who underwent PCI. The remaining samples were either lost or labelled incorrectly and 

therefore not processed. The distribution of measured troponin I levels are shown in the 

histogram below (Figure 4.81).  

 

Figure 4.81 - A histogram of troponin I measurements 24 hours post-PCI. 
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The mean troponin level was 1.18µg/L (Median 0.57, SD=2.0). One patient had an 

exceptionally high troponin of 13.1 following single vessel PCI however all other 

patients had levels less than 6µg/L. This data was then split into those patients who had 

received single, two or three vessel PCI. Table 4.25 summarises the troponin data 

depending on number of vessel intervened upon. 
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Table 4.25 - Troponin I data for single vessel, two or three vessel PCI. 

PCI 

Arteries 

Number 

(n) 

Mean Median StD Minimum Maximum

1 39 1.17 0.37 2.25 Undetected 13.1 

2 12 1.36 1.15 1.11 Undetected 3.1 

3 2 0.39 0.39 0.07 0.34 0.44 

 

There was no significant difference detected in comparing troponin results from patients 

having 1 or 2 vessel PCI (p=0.16), 1 or 3 vessel PCI (p=1.0) or 2 and 3 vessel PCI 

(p=0.24). However there were only 2 patients with troponin results who had 3 vessel 

PCI performed. 

 

The only parameters found to correlate with troponin I levels post PCI were lesion 

length and total stent length. As shown on Figure 4.82, troponin I levels increase with 

increasing length of the lesion (r=0.6, p<0.0001). 
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Figure 4.82 - Scatterplot of lesion length pre-PCI and troponin I levels post-PCI. 
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Given that lesion length was found to correlate with post PCI troponin I levels, 

unsurprisingly total stent length was also found to correlate with troponin I levels 

increasing with increasing total stent length (r=0.37, p=0.02). This data is shown on 

figure 4.83. 
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Figure 4.83 - Scatterplot of total stent length inserted and troponin I levels post-PCI. 
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4.9 Haemodynamic and Symptomatic Effects of Adenosine 

Pulse and blood pressure were closely monitored prior to and during the adenosine 

infusion whilst having the stress perfusion component of the MRI scan performed. 

Along with the symptoms experienced this helps tell if patients are adequately stressed 

by the vasodilating stress agent. The following box plots show the changes in pulse 

(figure 4.84), SBP (figure 4.85) and DBP (figure 4.86) from rest (prior to the adenosine 

infusion) and at least 2 minutes into the infusion with 140mcg/kg/min IV adenosine. 
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Figure 4.84 - Box plot showing pulse data at rest and stress highlighting the median 

pulse, the interquartile range, spread of data excluding outliers and the outliers. 
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Figure 4.85 - Box plot showing SBP data at rest and stress highlighting the median 

SBP, the interquartile range, spread of data excluding outliers and the outliers. 
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Figure 4.86 - Box plot showing DBP data at rest and stress highlighting the median 

DBP, the interquartile range, spread of data excluding outliers and the outliers. 

Stress DBPRest DBP

120

110

100

90

80

70

60

50

40

D
ia

st
ol

ic
 B

lo
od

 P
re

ss
ur

e 
(m

m
H

g)

 

 

The haemodynamic response to adenosine during the stress phase of the perfusion MRI 

is summarised in table 4.26. This shows a significant increase in heart rate with a 

significant fall in both SBP and DBP as expected with this vasodilating stress agent. Of 

the 101 patients included in the final analysis 5 (5%) were felt to have not achieved 

haemodyanamic stress on the basis of the haemodynamic data and symptoms 

experienced. This was despite increasing the dose of administered adenosine above 

140mcg/kg/min. 
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Table 4.26 - Changes in pulse, systolic BP and diastolic BP during adenosine stress 

MRMPI. Data were analysed using paired t-test comparing rest and stress data. * 

denotes skewed data where logarithmic transformation was performed. 

 No Mean Median SD t-value P value 

Rest Pulse 225 61 59 9.3 

Stress Pulse 225 85 84 11.9 
43.3* <0.0001 

Rest SBP  224 133 132 17.8 

Stress SBP  223 121 119 17.2 
12.4* <0.0001 

Rest DBP 224 78 77.5 11.6 

Stress DBP 223 71 71 11.7 
10.4 <0.0001 

 

The symptoms experienced during the adenosine infusion are presented in figure 4.87. 

The most common symptom experienced was breathlessness which was noted in 162 

(71.7%) scans. A warm flushing sensation was experienced in 120 (53.1%), chest pain 

in 119 (52.7%), headache in 41 (18.1%) and abdominal pain in 16 (7.1%). No patients 

experienced any wheeze and only one patient developed symptomatic AV block. 
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Figure 4.87 - Symptoms experienced by patients during the IV adenosine infusion of 

the MRMPI scan. 
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4.10 Serum Caffeine Measurements and Effects on Haemodynamics and Symptoms 

Of the 226 MRMPI scans performed, caffeine levels were measured in 220 (97%). 

Significant caffeine levels (≥1mg/L) were only detected on 29 (13.2%) occasions. One 

patient had detectable caffeine levels on all 3 attendances for MRMPI, 3 patients had 

detectable caffeine levels on 2 occasions and 20 patients on only one occasion. The 

spread of detectable caffeine levels is presented in figure 4.88. The median caffeine 

level was 1.33mg/L and the mean was 1.84mg/L (SD=1.13, IQ range=1.19-2.13). 
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Figure 4.88 - Histogram of serum caffeine levels (mg/L). 
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We then went on to compare the haemodynamic responses to the adenosine infusion 

(140mcg/kg/min) during the MRMPI scan between those patients with detectable 

caffeine levels (>1mg/l) and those patients with levels <1mg/l. Table 4.27 summarises 

the differences in pulse, SBP and DBP in those with and without detectable caffeine. 

The corresponding p values are given where comparisons have been made. 
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Table 4.27 - Table comparing pulse, systolic BP (SBP) and diastolic BP (DBP) at rest 

and stress in patients with and without detectable caffeine levels. Due to skewed dataset 

p values were obtained by first taking logarithmic transformations of the data and then 

using the two-sample T test. 

 Rest/Stress Caffeine Mean Median SD Min Max P value 

<1mg/l 61 60 9.1 38 94 
Rest 

≥1mg/l 57 57 10.0 41 81 
0.05 

<1mg/l 86 84 11.6 60 117 

Heart 

Rate 
Stress 

≥1mg/l 79 81 12.4 54 100 
0.02 

<1mg/l 132 132 17.6 96 180 
Rest 

≥1mg/l 138 141 19.0 111 178 
0.09 

<1mg/l 121 119 16.6 78 187 
SBP 

Stress 
≥1mg/l 125 121 21.2 98 189 

0.4 

<1mg/l 78 86 11.4 46 108 
Rest 

≥1mg/l 80 78 12.9 62 116 
0.4 

<1mg/l 71 78 11.1 41 102 
DBP 

Stress 
≥1mg/l 72 69 15.4 44 102 

0.97 

 

This table shows that the maximum stress heart rate achieved was significantly greater 

in those patients without detectable caffeine levels. This is an important observation as 

peak heart rate is an indicator of the achieved maximal hyperaemia. The stress heart rate 

data are also displayed graphically in Figure 4.89. There was also a trend towards a 

lower resting SBP in the undetectable caffeine level group however this did not reach 

statistical significance. Interestingly there was also a non-significant trend towards the 

detectable caffeine level group having a lower resting heart rate. 
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Figure 4.89 - Box plot showing stress heart rate data in patients with and without 

detectable caffeine levels highlighting the median heart rate, the interquartile range and 

the spread of the data. 
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We also examined the differences in pulse, SBP and DBP at rest and stress in individual 

patients in the caffeine detected and not detected groups. These data are presented by 

means of boxplots in figures 4.90, 4.91 and 4.92. There was no significant difference 

between differences in heart rate (p=0.12), differences in SBP (p= 0.35) and differences 

in DBP (p=0.36) in the caffeine detected and not detected groups.  
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Figure 4.90 - Box plot showing difference in heart rate between rest and stress in 

patients with and without detectable caffeine levels highlighting the median difference, 

the interquartile range, the spread of the data without outliers and the outliers. 
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Figure 4.91 - Box plot showing difference in systolic BP between rest and stress in 

patients with and without detectable caffeine levels highlighting the median difference, 

the interquartile range, the spread of the data without outliers and the outliers. 
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Figure 4.92 - Box plot showing difference in diastolic BP between rest and stress in 

patients with and without detectable caffeine levels highlighting the median difference, 

the interquartile range, the spread of the data without outliers and the outliers. 
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In those patients who were found to have a detectable caffeine level (≥1mg/l) we used 

Pearson’s correlation coefficient to see if any relationship existed between the mean 

caffeine level (average of pre and post MRMPI caffeine levels) and the various 

parameters examined above. The results of this analysis are tabulated in table 4.28. As 

shown no significant correlation was found however the greatest correlation was found 

with resting SBP (p=0.08) and the difference in DBP between stress and rest (p=0.08). 

Scatterplots with a line of best fit are displayed for these two parameters in figures 4.93 

and 4.94. 
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Table 4.28 - Pearson’s correlation coefficient and p value for various measured 

haemodynamic parameters compared to mean caffeine levels (mg/l) during MRMPI 

scanning. 

Haemodynamic Parameter Correlation Coefficient (r) P Value 

Resting Heart Rate -0.28 0.16 

Stress Heart Rate -0.12 0.55 

Resting Systolic BP 0.35 0.08 

Stress Systolic BP 0.26 0.18 

Rest Diastolic BP 0.028 0.89 

Stress Diastolic BP 0.23 0.24 

Heart Rate Difference 0.14 0.49 

Systolic BP Difference -0.08 0.68 

Diastolic BP Difference 0.34 0.08 

 

Figure 4.93 - Scatterplot of resting systolic BP (mmHg) and mean caffeine levels 

(mg/l) with corresponding line of best fit equating to r=0.35. 
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Figure 4.94 - Scatterplot of difference in stress and rest diastolic BP (mmHg) and mean 

caffeine levels (mg/l) with corresponding line of best fit equating to r=0.34. 
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Another indicator of the effectiveness of pharmacological stress is the development of 

symptoms during the adenosine infusion. We compared the incidence of each of the 

common symptoms experienced. Chest pain was experienced in 13 (45%) of the 29 

patients with detectable caffeine compared to 106 (54%) of the 196 patients with 

caffeine levels <1mg/l. This difference was not significant with p=0.35 using the chi-

square test. Shortness of breath occurred in 20 (69%) patients with detectable caffeine 

compared to 142 (72%) without detectable caffeine (p=0.69). Flushing was encountered 

in 10 (34%) patients with detectable caffeine compared to 110 (56%) of those without. 

This difference was statistically significant with p=0.03. Headache occurred in 4 (14%) 

of those patients with detectable caffeine compared to 37 (19%) of those patients 

without (p=0.51). One patient (3%) in the caffeine group complained of abdominal pain 

compared to 15 (8%) without detectable caffeine (p=0.41). Taking both groups of 

patients collectively 4 (14%) patients in the caffeine group failed to experience any 

symptoms during the adenosine infusion compared to 11 (6%) in the group with 
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undetectable caffeine. The p value was 0.09 indicating a trend towards more symptoms 

in patients with lower caffeine levels however this does not quite reach statistical 

significance. 
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5 Discussion 

5.1 Patient Characteristics 

The patients recruited into the study demonstrated the typical risk factor profile that 

predisposes to coronary artery disease. The majority of our patients were male (74%) 

with a high body mass index. Hypercholesterolaemia was the most prevalent risk factor 

for coronary artery disease affecting 79% of our patients. Hypertension was also very 

common in our group, which is also of high prevalence in the West of Scotland. There 

were more ex-smokers than smokers in our study (40% vs 17%) which we hope will be 

a continuing trend in Scotland since smoking was banned in public places in March 

2006. Certainly the number of admissions in Scotland with an acute coronary syndrome 

fell after the implementation of this.(127) Just over half (51%) of our patients also had a 

family history of premature ischaemic heart disease which highlights the genetic 

predisposition to this common disease. Two patients undergoing renal dialysis therapy 

for chronic kidney disease were recruited into the study before we knew of the concerns 

regarding nephrogenic systemic fibrosis (NSF). This condition carries a 30% risk of 

mortality and is thought to be due to free gadolinium ions separating from its chelation 

compound in uraemic patients and entering the extracellular space where fibrillogenesis 

is accelerated.(110;112;114) Gadolinium appears to stimulate a fibroblast reaction 

which can be found in skin biopsies and can lead to progressive thickening of the skin. 

The majority of cases that have been reported appear to been associated with the 

gadodiamide preparation of gadolinium (Omniscan, GE Healthcare) which was used in 

the current study.(111) It is now advised not to give gadolinium to patients with a 

glomerular filtration rate of less than 30ml/min/1.73m2.(113) Twenty-four (23%) 

patients had experienced a previous MI and only a small number of patients had 
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evidence of vascular disease elsewhere with 2 patients having had a previous stroke and 

2 patients with known peripheral vascular disease. 

 

Interestingly, at the time of referral to the cardiology clinic almost all of the patients 

were taking aspirin, a beta blocker and a statin (almost 90%). Twenty-four of these 

patients would have been on these medications following their previous MI however the 

rest would have been commenced by the referring cardiologist or their general 

practitioner. Forty-four percent of patients had already been commenced on clopidogrel 

in anticipation of them requiring PCI or having had an acute coronary syndrome in the 

preceding 3 months. As far as antianginal therapy was concerned nicorandil and 

calcium channel blockers were slightly more popular than stand-alone nitrate 

preparations.9 (34% vs 30%). Angiotensin converting enzyme inhibitors and 

angiotensin receptor blockers had been prescribed in 55% of patients, probably as a 

result of the high prevalence of hypertension and previous MI. 

 

5.2 Patient Outcome 

As we had anticipated in our power calculation, the majority of patients (57) ended up 

having PCI as their method of revascularisation and only 15 patients had CABG. None 

of the 101 patients died during the study period. The PCI patients had significant 

improvements in FFR, CFR, Qcorr, resting Pd/Pa and a significant reduction in the 

uncorrected IMR. The mean post-PCI FFR was 0.90 which was our target value 

following intervention and has been shown to be associated with excellent outcomes in 

a large multicenter study.(56) All CABG patients received at least one arterial graft. 

Only 3 CABG patients had no post-operative complications however all but one 

attended for follow-up imaging. This showed significant reductions in the number of 
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hypoperfused coronary segments in both groups of patients with a non-significant trend 

towards fewer segments in the PCI group. 

 

5.3 Magnetic Resonance Myocardial Perfusion Imaging v FFR and Quantitative 

Coronary Angiography 

Several previous studies have assessed the ability of MRMPI to detect reversible 

myocardial ischaemia though this study is the largest to date. The majority chose to use 

quantitative coronary angiography as the gold standard for calculation of sensitivity and 

specificity.(13;15;17-25) Some used nuclear perfusion methods such as SPECT and 

PET.(11;12;14;16) We have compared MRMPI to a combined invasive gold standard of 

FFR and CFR. The most important finding in this study is the excellent sensitivity and 

specificity, and positive and negative predictive values of MRMPI when compared to 

our gold standard and to prior studies utilising MRMPI.(11-25) No previous study has 

employed both FFR and CFR together. Our findings suggest that the diagnostic utility 

of MRMPI has perhaps been underestimated. Of the 4 previous studies comparing 

MRMPI and FFR alone, two present the same data and the number of patients in these 

studies was small (n=43, 37 & 30) .(30;31;33;35) In the study by Rieber et al, the FFR 

was only measured in 1/3 of coronary territories.(30) Upslope derived MPRI was used 

to assess the accuracy of MRMPI with similar sensitivity and specificity values to our 

own of 88% and 90% respectively. The study by Costa et al, also reported by Futamatsu 

et al chose to use a fully quantitative method of measuring myocardial perfusion reserve 

(MPR) with the Fermi method and deconvolution.(31;33) These studies however only 

compared MPR and FFR in 44 segments equating to 40% of coronary territories. The 

sensitivity was good at 93% however the specificity was 57% with wide 95% 

confidence intervals. Kühl et al had chosen a similar method of analysis to Rieber et al 

where upslope derived MPR was calculated.(35) Similarly this study failed to measure 
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FFR in all coronary arteries with only 31% of potential measurements being made. This 

study found an excellent sensitivity and specificity at 92% which is similar to the 

findings of Rieber et al. 

 

It is not surprising that MRMPI is superior to other non-invasive methods such as 

SPECT and stress echocardiography in that it provides superior spatial and temporal 

resolution over the nuclear perfusion methods and is not limited by imaging plane or 

inadequate ultrasonic windows. Our study highlights the well known limitations of 

using quantitative coronary angiography to assess the functional significance of 

coronary arterial disease.(2;3) The sensitivity and negative predictive values of QCA are 

excellent but the specificity and positive predictive values are poor. Our study also 

highlights the importance of ensuring that patients have demonstrated an adequate 

haemodynamic response to the vasodilating agent, in this case adenosine, before 

reporting a negative study. Even with a recommended 24 hours of abstention from 

caffeine we still observed that around 5% of patients failed to respond to adenosine. 

This aspect of perfusion imaging will be discussed later in the discussion. 

 

The majority of centres use visual analysis for the assessment of myocardial perfusion 

scans (Table 1.2). Comparing the rest and stress scans together on a viewing platform 

enables recognition of perfusion defects and discrimination from artefacts.(43) As 

visual analysis remains the main method of assessing MRMPI clinically, we used this 

method in our study but also subjected the data to exhaustive further analysis using 3 

different semi-automatic quantitative methods of measuring regional myocardial 

perfusion reserve index (MPRI).(22) The argument remains that patients with triple 

vessel disease and balanced hypoperfusion throughout the mycocardium would be 

missed by a purely visual based assessment. Nine patients in the present study had 
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proven functionally significant triple vessel disease by FFR assessment. In 3/9 visual 

analysis of the MRMPI scans correctly diagnosed hypoperfusion in all 3 vessel 

territories; in 4/9 patients 2 hypoperfused territories were diagnosed. In one patient 

hypoperfusion was diagnosed in one vessel and in one patient the MRMPI scan was 

interpreted as being normal. Interestingly these latter two patients were both non-

responders to adenosine and inadequate pharmacological stress is likely to have 

contributed to the diagnostic error. Both of our blinded observers had been 

independently reporting the results of clinical and research MRMPI scans for at least 2 

years prior to performing the analysis for this study. On a per patient basis the observers 

had excellent agreement and by individual coronary perfusion territories agreement was 

substantial. Experience and knowledge of potential artefacts is critical to the accurate 

visual analysis of MRMPI scans as the commonly encountered artefacts with rapid 

image acquisition usually manifest themselves as dark subendocardial rims and may 

mimic perfusion defects especially in the interventricular septum and lateral wall.(43) 

 

Using pressure wire derived FFR has a number of advantages in the evaluation of a non-

invasive technique for the detection of physiologically significant coronary artery 

disease. It can reliably identify a flow limiting stenosis in an epicardial coronary artery 

and has been previously validated against what is probably the current gold standard, 

namely PET.(36) It is independent of heart rate, blood pressure and contractility, and 

takes into account the contribution of collateral flow to myocardial perfusion.(37) An 

FFR value <0.75 confirms that the stenosis being interrogated has the potential to 

induce ischaemia at maximal hyperaemia.(38;39) Most of the published studies 

describing the predictive accuracy of FFR measurements have been in the setting of 

stable angina but the technique has been validated in the setting of unstable angina and 

recent (>5 days) MI.(52;56;128) The majority of our patients had stable angina however 
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25% had experienced recent unstable symptoms and 23% had a previous MI. There is 

unpredictable variability in all biological measurements and so any cut-off value cannot 

be expected to have absolute precision. Increasing the FFR cut-off to 0.8 led to a 

reduction in the number of false positive territories at the expense of a large increase in 

the number of false negative territories. A thermodilution derived CFR<2.5 used alone 

as a gold standard was associated with a large number of false negative results. This 

may be in part due to a high cut-off value. We chose a CFR <2.5 based on previous 

Doppler derived CFR studies however the thermodilution technique did produce higher 

values in a recent comparative study.(60) Thermodilution measurements have more 

potential than FFR for error. It can be difficult to establish a consistent baseline transit 

time, especially at rest. A number of technical factors can affect these recordings 

especially guide catheter engagement which if altered between measurements can 

produce large differences in transit times. Interestingly 60% of false positive scans had a 

low CFR raising the possibility that microvascular disease may have contributed to their 

perfusion defects on MRMPI. Eighty percent of these scans however had FFR values in 

the grey zone of 0.75-0.8 and may in fact have been true positive results. 

 

There are some important limitations of the current study. FFR was only measured in 

81% of major epicardial coronary arteries. Not all occluded vessels were crossed with 

the pressure wire and often when occlusions were crossed, other types of wire which are 

more suited for this purpose were used. However we inserted an FFR value of 0.40 in 

totally occluded arteries not crossed with the pressure wire and this increased the 

proportion of epicardial vessel FFR data points to 92%. The number of non-occluded 

lesions not crossed is documented in the results section and this was mainly because it 

was felt unacceptable to expose the patient to the risk of crossing an angiographically 
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severe lesion when their overall pattern of disease required surgical rather than 

percutaneous revascularisation. 

 

Despite the excellent results of MRMPI for the accurate detection of physiologically 

significant coronary artery disease there are also some important limitations of this 

technique. Claustrophobia remains problematic with the majority of commercially 

available scanners, however new open or wide bore scanners are in development. Some 

patients have contraindications to adenosine such as asthmatics and patients with high 

degrees of AV block. Exercise within the magnetic field of the scanner is becoming a 

possibility with specially adapted non-ferromagnetic exercise bicycles and open 

scanners.(129;130) Another limitation of this work is that in any given patient we 

cannot be certain that we have correctly assigned all myocardial segments to the 

appropriate coronary artery. For example in a patient with a co-dominant circulation it 

can be difficult to know which vessel provides the majority of the blood supply to the 

inferior wall. Another area of difficulty is when the left anterior descending coronary 

artery wraps around the apex of the heart and supplies a substantial proportion of the 

inferior wall. According to the AHA coronary artery territory model this apical inferior 

wall is supplied by the right coronary artery.(10) If the right coronary artery was normal 

in this circumstance and there was an inferior perfusion defect as a result of a stenosis in 

the left anterior descending coronary artery then, in terms of localisation of ischaemia 

this would be classed as a false positive. 

 

We chose to repeat the MRMPI scan at 4 weeks post-PCI and post-CABG in order to 

compare the success of revascularisation by these two methods at the same point in 

time. We were interested to see if patients having undergone PCI would have a return to 
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normal perfusion within 24 hours of revascularisation or if there was a lag period 

following distal embolisation of plaque debris. Four weeks was felt to be an optimal 

time as patient’s post-CABG would have recovered from their surgery and we felt that 

all patients would be more likely to attend earlier rather than later after revascularisation 

provided this had been successful. The disadvantages of scanning at this time are that 

we may not have assessed the maximal improvement in LV systolic function following 

CABG by this stage where waiting until 6 months had elapsed would have been best. In 

addition patients are unlikely to develop problems within 4 weeks and waiting till a later 

date would have been advantageous to those patients who experienced a return of 

symptoms. 

 

5.4 MRMPI and Pressure Wire in the Detection of Microcirculatory Disease 

One of the aims of the present study was to determine if false positive MRMPI scans 

were due to microvascular coronary disease as assessed by CFR and the index of 

microcirculatory resistance (IMR). Or in other words assess if a qualitative assessment 

of MRMPI was able to diagnose isolated microcirulatory dysfunction in arteries with 

normal epicardial function. We defined arteries as having isolated microcirculatory 

dysfunction when the FFR was >0.8 and the CFR<2.5. Twelve arteries had to be 

excluded from this analysis due to late gadolinium enhancement in the downstream 

myocardium. Of the remaining 55 arteries only one corresponding territory had 

evidence of a perfusion defect therefore confirming that qualitative analysis of MRMPI 

scans cannot be used to diagnose isolated microcirculatory disease as defined by these 

pressure wire criteria. We then looked at 28 identified arteries with an FFR>0.8 and 

CFR<2.0 and no LGE on MRI which would have a greater likelihood of microvascular 

disease. No visually identified perfusion defects were found suggesting again that 
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qualitative assessment of MRMPI is unable to identify isolated microvascular disease. 

Microcirculatory dysfunction has been proposed as a cause of cardiac syndrome 

X.(131;132) In this condition patients complain of typical anginal sounding pain with an 

ischaemic ETT however normal epicardial coronary arteries at angiography. It has been 

shown that semiquantification of MRMPI using the myocardial perfusion reserve index 

(MPRI) can be used to identify subendocardial hypoperfusion compared to the 

subepicardium in patients with cardiac syndrome X.(133) In the present study we 

calculated the subendocardial MPRI for comparison with FFR in the diagnosis of 

ischaemia. Our Fermi deconvolution derived MPRI results for 26 coronary territories 

with an FFR>0.8 and CFR<2.0 found a mean of 2.2 which is less than the cut-off 

proposed in our FFR comparison of 2.41. We didn’t draw regions of interest in the 

subepicardium for comparison with the subendocardium as this was beyond the scope 

of this study and would have added greatly to the time of the analysis of these scans. 

One limitation of using CFR for the identification of microvascular disease in the 

presence of a normal FFR is the variation that is encountered when measuring this 

parameter. It can be very difficult to obtain 3 identical thermodilution curves at rest 

which is the downside to this method.  

 

We had 11 false positive coronary territories with hypoperfusion on MRMPI however 

an FFR≥0.75. On closer examination of these territories, 8 (73%) were likely to be true 

positives as their corresponding FFR was in the grey zone between 0.75 and 0.8. It is 

generally accepted that no biological measurement has an exact cut-off value 

representing normality and some centres now use 0.8 as their cut-off as has been used in 

the recent FAME study which reported its findings at the Trans-Catheter Therapeutics 

(TCT) Conference in Washington.(126) 
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As documented in the results section, a CFR measurement of less than 1 was 

encountered in 26 arteries. This suggests that during coronary vasodilation with 

adenosine, coronary flow is less than that encountered at rest thereby producing a result 

of less than one. A potential biological reason for this could be the coronary steal 

phenomenon whereby coronary blood flow falls in one collateralised coronary region in 

favour of another region.(134) In other words, the blood supply to a region of 

myocardium is diverted to an adjacent area which leads to hypoperfusion of the original 

region of myocardium. 

 

5.5 Myocardial Perfusion Reserve Index (MPRI) 

In addition to the visual analysis of the MRMPI scans, we also undertook a semi-

quantitative analysis looking at the myocardial perfusion reserve index (MPRI) 

Absolute quantification of myocardial blood flow was not possible at the dose of 

gadolinium we used in this study. At a dose of 0.1mmol/kg gadolinium kinetics are non-

linear with myocardial blood flow. Other studies have attempted quantification however 

these studies have chosen lower gadolinium doses.(31) We chose a 0.1mmol/kg dose of 

gadolinium as this was felt using the turboFLASH pulse sequence to give the best 

images for qualitative assessment, which was the primary measure of the study. In 

Glasgow we had a lot of experience of using this dose prior to commencing the study 

and were familiar with the dark rim artefacts encountered which is the main 

disadvantage of its use. We were still able to semi-quantitatively measure MPRI 

however were unable to perform absolute flow quantitation as explained above. Using 

0.1mmol/kg also allowed us to perform our LGE imaging after the stress first pass 

images and therefore keep the total scan duration down and improve patient tolerability. 

The MPRI gives a semi-quantitative measure of coronary flow and can be assessed for 
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each of the coronary segments as defined in the AHA model.(10). There are some 

advantages in having a measure of perfusion rather than just eye-balling the scans for 

areas of hypoperfusion. As mentioned above there is a concern that in patients with 

triple vessel coronary artery disease balanced hypoperfusion may be missed by 

perfusion imaging techniques. Visual assessment relies on at least one area of the heart 

to appear normally perfused in order to distinguish areas of hypoperfusion. In clinical 

practice we have not found this to be much of an issue. In theory however, if all 

myocardial territories were to be hypoperfused to a similar extent then a semi-

quantitative method such as measuring the MPRI should identify this. Calculating the 

MPRI has also allowed us to generate receiver operator curves (ROC) which are useful 

in determining the clinical utility of MRMPI. The disadvantage of this approach is 

primarily the length of time it takes to analyse one scan. This can take up to 30 minutes 

each, depending on the amount of motion artefact caused by patient breathing during the 

scan. Having each of the 50 images per first pass of gadolinium accurately spatially 

aligned such that the myocardial segments are exactly on top of one another is essential 

for the generation of signal intensity/time curves. From these curves we calculate MPRI 

values. The drawing of regions of interest involves drawing endocardial and epicardial 

lines between which we measure the signal intensity. At the time of this study and 

probably still now there is no perfect software package which can perform this task 

without error. We collaborated with Dr Murdoch Norton, physicist at Aberdeen Royal 

Infirmary, who has designed a programme which can calculate MPRI and this was 

modified for our purposes in this study. Nevertheless the analysis remained time-

consuming. Some patients had great difficulty holding their breath, normally because 

they were very symptomatic during the adenosine infusion. There were also some 

patients who did not achieve an especially high heart rate during the infusion and 

therefore had to endure a longer breath hold. In these patients even our image 
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registration software could not cope with large movements of the heart. When each 

image per slice has to be aligned manually this increases time of analysis. In these cases 

it can take well over an hour to complete the analysis of one scan. Despite the time 

involved, myself and Dr Norton, the second observer analysed each of the MRI scans 

performed in this study. As documented in the results section, some of the scans had to 

be excluded form the analysis due to artefacts, including breathing artefact. Some scans 

had to be excluded where the most basal slice was too close to the left ventricular 

outflow tract. This caused the anterior and anteroseptal segments in the basal slice to 

have the same signal intensity/time curve as the AIF (LV blood pool). This led to MPRI 

values that were exceptionally high. In addition, if there were inaccuracies in 

determining the region of interest and it included epicardial fat, this would also lead to a 

very high MPRI value. Despite problems with the semiquantitative analysis in these 

patients both observers were still able to assess these scans qualitatively. Another 

consideration we had to make was determining any areas of dark rim artefact usually 

caused by susceptibility. This artefact usually occurs septally and laterally at the 

interface between myocardium and the LV blood pool and can mimic perfusion defects. 

Both observers were experienced in the analysis of MRMPI scans and visualised both 

the stress and rest scans before drawing the regions of interest. Generally where a dark 

rim occurs in both scans which is not an area of MI we took it to represent artefact, and 

therefore avoided this area. The dose of gadolinium we chose for our analysis was good 

for the analysis of scans visually and by upslope parameters however it does lead to 

more susceptibility artefact.(22;23) If areas of susceptibility artefact were included in 

the analysis this would give a false positive result with an artificially low MPRI.  

 

We chose three of the most commonly used methods to assess MPRI, namely the Fermi 

method with deconvolution, maximum signal, and upslope gradient. In our analysis we 
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examined the lowest MPRI per coronary territory, and also the mean MPRI per 

coronary territory. As we only had 3 short axis slices and therefore only 16 segments of 

the 17 segment AHA model, we took the mean of the 6 left anterior descending artery 

segments, and the 5 left circumflex and 5 right coronary artery segments. In the final 

analysis a mean value was obtained from the 2 observers to improve the accuracy of our 

results. A greater difference in results between observers is noted with this type of 

analysis and probably reflects differences in selection of regions of interest. Observers 

also had to select the points of the curves for determination of the upslope gradient, and 

also the points of the maximum signal, which may introduce a degree of error. The 

calculation of the Fermi deconvolution derived MPRI was more of an automated 

process performed by the computer programme. The majority of differences between 

observers with any of the methods of assessing MPRI were around 0, however on some 

occasions observers have discrepancies of a MPRI of around 3. We chose to look at the 

lowest MPRI value in addition to the mean MPRI per coronary territory as we were 

concerned that a small perfusion defect with a low MPRI in one or two segments could 

be diluted with normal or high MPRI values in the other segments. Although we 

followed the AHA model for our analysis, it is generally accepted that there is 

individual variation in which arteries supply which coronary segments. One concern of 

ours was the blood supply to the inferior wall in the apical and mid ventricular slices. 

This would be supplied by the RCA in the majority of cases however there are patients 

in whom the left anterior descending coronary artery wraps around the LV apex to 

supply a substantial proportion of the inferior surface of the heart. Therefore patients 

with a severe stenosis in an LAD would have an inferior perfusion defect leading to 

inaccurate results. Similarly, we also found a number of patients in whom the basal 

inferior septum was supplied by the LAD as opposed to the RCA, as defined in the 

AHA model.(10) This problem may have lead to some inaccuracies in our 
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measurements. Our results show that the difference between observers generally 

exhibits a normal distribution, with the majority of differences being zero, which is 

reassuring. This was the same for each of the 3 methods of measuring MPRI using 

either the mean MPRI or the lowest MPRI per coronary territory. We then went on to 

compare MPRI with FFR, which was our gold standard invasive test. Each of the 

methods of assessing MPRI had a good correlation with FFR however this was 

consistently better when the lowest MPRI value was taken, as opposed to the mean 

value per coronary artery territory. This most likely reflects the dilution of results and 

overlapping coronary artery territories, as discussed above. The second best invasive 

pressure wire measurement to correlate with MPRI was CFR. This was not surprising as 

CFR takes into account both the flow within the epicardial coronary artery and also the 

microcirculation. Interestingly when we compared the uncorrected and corrected indices 

of microcirculatory resistance (IMR) the results were somewhat surprising. 

Unfortunately we do not have any literature to make any comparisons to in this field. 

With increasing degrees of IMR (uncorrected) there was a negative Pearson’s 

correlation coefficient when compared with MPRI which would be expected as low 

microcirculatory resistance would lead to a greater measured MPRI. The degree of 

correlation was not strong, however was greatest with maximum signal derived MPRI 

where the Pearson’s correlation coefficient was -0.29 for the mean MPRI per coronary 

territory and -0.27 for the lowest MPRI per coronary territory. A positive correlation 

was found between MPRI and corrected IMR for each of the methods. This was mainly 

a weakly positive correlation however was 0.32 for mean MPRI and 0.27 for lowest 

MPRI when assessed by upslope gradient. The difference between these 2 methods of 

assessing IMR is that we have taken the contribution to myocardial flow from collateral 

vessels into the equation. The number of results we have where a coronary artery wedge 
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pressure has been recorded was small compared to the other invasive parameters and 

perhaps this is a spurious result as we would expect an inverse relationship here. 

 

All of our ROC curves showed that the lowest MPRI value per coronary artery territory 

was better than the mean MPRI value for each of the 3 methods used in assessing if an 

area was hypoperfused when using FFR as the gold standard. Our sensitivity and 

specificity results were slightly inferior to those produced in the two previously 

published comparisons with FFR. Using Fermi deconvolution derived MPRI and taking 

a MPRI cut-off of 1.7 and FFR<0.75 we obtained a sensitivity of 90% and specificity of 

48%. Costa et al using an MPRI cut-off of 2.04 and the same FFR cut-off obtained a 

sensitivity of 92.9% and specificity of 56.7% with wide 95% confidence intervals.(33) 

Given that the authors of this study claim this is an absolute quantification of 

myocardial perfusion reserve and has been validated with radiolabelled microspheres 

then overall our method has not performed too badly.(46) Our sensitivities and 

specificities were also slightly lower than that achieved by Rieber et al who using a 

MPRI cut-off of 1.5 had a sensitivity of 88% and specificity of 90%.(30) Our study was 

never designed to be a comparison with MPRI. We set out to compare the most widely 

used method of assessing MRMPI scans in clinical practice which is qualitative visual 

analysis. When this is performed our results are better than that obtained by MPRI with 

a sensitivity and specificity of 91% and 94% respectively. It is perhaps not surprising 

that the MPRI results do not match this as the dose of gadolinium we chose was double 

that used in the previous MPRI studies for the reasons explained above (table 1.3). 

 

The measurement of MPRI proved to be useful when assessing the success of coronary 

revascularisation. When using the lowest and the mean MPRI per coronary territory and 
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the total mean MPRI for all 16 segments per heart we found a significant increase in 

MPRI from pre-revascularisation to 24 hours post-revascularisation in the PCI group. 

There was also a significant increase in MPRI between the pre-revascularisation and 4 

weeks post revascularisation in both the PCI and CABG groups. Interestingly there was 

no significant increase in MPRI between the 24 hours post-PCI and 4 weeks post-PCI 

MRMPI scan indicating that the majority of the benefit in coronary perfusion occurs 

within 24 hours of revascularisation. PCI was shown to result in a significantly better 

mean MPRI per coronary territory when compared with CABG (2.42 v. 2.1, p=0.019). 

In addition there was a trend towards a higher lowest MPRI values per coronary 

territory and total mean MPRI per heart in the PCI group. This result was surprising as 

CABG would be expected to result in a higher proportion of patients receiving complete 

revascularisation. In terms of the increase in mean MPRI per coronary territory there 

was a trend towards a greater increase in the PCI patients when compared to CABG. 

 

5.6 Left Ventricular Function, Mass and Volume Analysis 

The majority of previous studies looking at magnetic resonance myocardial perfusion 

imaging (MRMPI) did not provide information on the ejection fractions of the patients 

involved in their studies.(11-13;15;17;21;22;24;25;27;31;32;34) Compared to those 

studies which did include an MRI derived LVEF our study, with a mean LV ejection 

fraction of 67.7% with a standard deviation of 7.4% was at the higher end of the 

spectrum. The only study with a higher ejection fraction was Schwitter et al, 2001, 

where ejection fraction was 73% with a standard deviation of 4% however this was in 

patients with no coronary disease.(14) Interestingly their patients with coronary disease 

had an ejection fraction of 67% (S.D = 7%) which is almost exactly the same as in our 

patients. Cury et al 2006 had the lowest mean ejection fraction at 54.8% (S.D = 8.2%). 
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Two thirds of their patients had significant coronary artery disease as per coronary 

angiographic appearances and in our study 80% of patients had proven significant 

coronary disease. We therefore cannot put the difference in ejection fraction down to the 

severity of coronary artery disease. In each of the studies differing software packages 

had been used to analyse left ventricular volumes and ejection fractions and this may 

have contributed to a difference. Those studies who have recorded a mean ejection 

fraction have their data presented on table 5.1, including those already mentioned in this 

section. 

 

Table 5.1 - Ejection fractions of patients who participated in previous first pass 

perfusion MRI studies. 

Author 
Year Patients 

Ejection 

Fraction (%) 

Standard 

Deviation (%)

Schwitter J(14) 
2001 

66 

(incl. 18 volunteers)

67 (CAD) 

73 (no CAD) 

7 

4 

Ibrahim T(16) 
2002 

59 

(incl. 34 volunteers)
64 13.5 

Ishida N(18) 2003 104 61.2 9.15 

Paetsch I(20) 2004 79 58 6 

Klem I(28) 2006 92 56 13 

Cury RC(29) 2006 46 54.8 8.2 

Costa MA(33) 2007 37 57 13 

Rieber J(30) 2006 43 58 9 

 

Interobserver variability was assessed for each of the parameters measured using Argus 

dynamic signal. Both observers were experienced in measuring myocardial mass, LV 
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ejection fraction, end diastolic and end systolic volumes.Differences in LV ejection 

fraction and myocardial mass between observers followed a normal distribution. 

Interestingly when we assessed differences in left ventricular end diastolic volume and 

left ventricular end systolic volume observer 1 had a tendency to higher values than that 

of observer 2. Variations in left ventricular volumes are usually due to differences in 

determining which slice represents the most basal segment that is taken into account 

when calculating volume. The majority of centres practise on the principle that if there 

is a circumference of myocardium greater than 50% then this should be included in the 

volume analysis. Some software packages have incorporated a tracking system for the 

mitral valve plane in order to determine the location of the most basal slice for more 

accurate measurements of left ventricular function and volumes. (CMR tools, Imperial 

College London).(135) This helps to ensure that left atrial volume is not included in the 

left ventricular volume. Another reason for differences in calculated volumes is due to 

partial volume of myocardium. In this circumstance where myocardium is not fully 

within the slice it can appear as being less dense or a lighter shade than other 

myocardium. There are different opinions on how much of this myocardium should be 

counted in the analysis and this becomes more difficult as you get towards the apex of 

the left ventricle where there are more trabeculations and more partial volume effects.  

 

Analysis of the ejection fractions of our patients prior to coronary angiography when 

divided into their subsequent groups (normal, PCI, CABG, medical therapy) revealed 

no significant difference as shown on figure 4.54. PCI was associated with a significant 

increase in the LVEF at 24 hours post-PCI compared to the pre-PCI scan. These data 

were highly significant and are demonstrated in figure 4.55 and also on table 4.19. 

Interestingly there was a non-significant drop in ejection fraction between the 24 hour 

post PCI scan and the 4 week post PCI scan. It is difficult to know why this is, as 
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restenosis would be unlikely within 4 weeks and none of our patients complained of any 

significant chest pain when they attended for the scan. If anything one would have 

expected the same or a slightly better ejection fraction at 24 hours as the pre-PCI scan as 

hibernation may persist for some time in chronically ischaemic myocardium prior to an 

improvement in LV ejection fraction. We would have expected the 4 week scan to be 

better than the 24 hour scan. However when the pre PCI scan was compared with the 4 

weeks post PCI scan there is still a non-significant increase. A recent study published in 

the European Heart Journal examined the time course of functional recovery of 

hibernating myocardium using contrast enhanced cardiac MRI.(136) This study 

included 35 patients who had contrast enhanced cardiac MRI performed 1 month prior 

to revacularisation and at 3, 6, and 24 ± 12 months post revascularisation. Of the 35 

patients 25 (71%) were revascularised by CABG and 10 (29%) had PCI performed. 

Seven patients had a previous CABG and 3 had previous PCI prior to being recruited 

into the study. The cardiac MRI scans were analysed for LV ejection fraction and 

segmental hyperhancement by calculating the area of hyperenhancement within the 

myocardial segments. LV function improved at each of follow-up time points however 

only reached statistical significance at 6 months (p=0.036). Segmental functional 

improvement was inversely related to the segmental hyperenhancement as expected. By 

the end of the study period 93% of segments with no hyperenhancement demonstrated 

functional improvement compared to 70% of segments with 1-25% segment 

hyperenhancement, 66% with 26-50% segment hyperenhancement, 36% with 51-75% 

and 5% with 75-100%. The time course for this recovery was protracted with less than 

half (45%) of all segments which eventually improved showing some improvement by 3 

months. The time course of recovery was significantly more delayed in segments with 

more hyperenhancement at baseline (p<0.001). Therefore the study concluded that the 

time course and likelihood of function recovery was dependent on the amount of 
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myocardial scar. (136) Prior to this study Zellweger et al published in 2004 a study of 

38 patients who underwent myocardial perfusion SPECT 17 ± 22 days prior to and 177 

± 54 days post PCI. Eighty-two percent of patients had single vessel PCI performed and 

the remaining 18% had ≥2 vessel PCI. This resulted in a huge reduction in the 

symptoms of angina from 84% of patients to 5% (p<0.001). Despite a significant 

reduction in the signs of ischaemia by stress ECG and myocardial perfusion SPECT 

(p<0.001) there was no significant change in LV ejection fraction as defined by SPECT 

(55 ± 10% vs 57 ± 13% at 6 months) however there were significant reductions in LV 

end diastolic volume and end systolic volume (p=0.006 and 0.001 respectively) 

indicating a positive effect on LV remodelling.(137) These results show no significant 

improvement in LV ejection fraction whereas we found quite a significant increase. 

This study however used SPECT as opposed to cardiac MRI for the evaluation of left 

ventricular function which is known to be less accurate. Cardiac MRI is now widely 

regarded as the reference standard for evaluating cardiac function due to its excellent 

temporal and spatial resolution.(138-140) In addition a proportion of patients in this 

study were not completely revascularised with 26% having double vessel coronary 

disease and 5% with triple vessel disease whereas only 18% got ≥2 vessel PCI 

performed, leaving 13% of vessels without revascularisation. In our study there were 7 

CTOs which were not opened. Two of these were small non-dominant vessels and not 

even attempted. Therefore in our study our percentage of vessels not revasularised was 

half of that in the study by Zellweger et al at 6%. This may also help account for the 

significant increase in LV ejection fraction post-PCI that we found in our study. 

 

A more recent study of 50 patients from Oxford used cardiac MRI to evaluate left 

ventricular function pre and post-PCI.(105) This study also correlated post-PCI troponin 

elevations with new late gadolinium enhancement and has already been discussed in the 
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introduction section. As well as performing late gadolinium enhancement imaging, cine 

MRI sequences were also performed to evaluate left ventricular function. The pre-PCI 

LV ejection fraction was 67 ± 11% compared to 68 ± 11% post-PCI (p=0.8). In patients 

with no new late gadolinium enhancement there was no significant change (p=0.8) in 

LV ejection fraction (69 ± 12% vs 71 ± 11%). In addition there was no significant 

change (p=0.9) in those patients with new late gadolinium enhancement (65 ± 8% vs 64 

± 11%). Unfortunately this study does not specify if these ejection fraction values were 

at 24 hours or 7 to 8 months post-PCI. The pattern of coronary artery disease was 

different between our two studies in that 70% of our PCI patients had single vessel PCI, 

26% had two vessel PCI and 4% had triple vessel PCI compared to 56% with single 

vessel PCI and 44% with 2 vessel PCI in the Selvanayagam study. However you would 

therefore expect the study with the more severe disease to gain the largest benefits in 

LVEF post-PCI. Our study does however include a complete physiological assessment 

of the severity of coronary artery disease whereas in the Oxford study coronary disease 

severity was assessed by visual assessment. This does raise the possibility that some 

lesions may have been revascularised inappropriately in which case no improvement in 

LV ejection fraction would be expected (105) 

 

CABG in our study made no significant impact on ejection fraction at 4 weeks however, 

our bypass group was significantly smaller than our group of patients who underwent 

PCI. Perhaps we have scanned our CABG patients too early to detect a significant 

change in LV ejection fraction as in the Bondarenko study, which included a majority of 

CABG patients and only found a statistically significant increase in LV ejection fraction 

at 6 months post revascularisation.(136) All of our CABG patients had good LVEF to 

begin with and therefore perhaps not much improvement could have been expected 

(Figure 4.56). Improvements in left ventricular function in patients with markedly 
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impaired left ventricular function have been reported in various studies. A study of 75 

patients with moderate to severely impaired LV dysfunction was reported this year 

(2008).(141) Left ventricular function as assessed by echocardiography improved from 

0.32 ± 0.06 to 0.46 ± 0.02 which was a significant improvement (p<0.001). 

Selevanayagam et al published a study in 2004 comparing the effects of off and on-

pump CABG in 60 patients (30 randomised to each arm).(142) Cardiac MRI 

examination was performed prior to CABG and a median follow-up of 6 days post 

surgery. The baseline ejection fraction for both groups was 62 ± 12%. Post-operatively 

this dropped to 59 ± 11% in the on-pump CABG group and increased to 65 ± 12% in 

the off-pump CABG group. The absolute difference between the surgical groups was 

significant (p=0.03) however the overall difference between pre and post-CABG 

ejection fractions was not significant. The study concluded that off-pump CABG led to 

significantly better LV function early after surgery. On-pump CABG can cause periods 

of ischaemia during aortic cross-clamping which can lead to myocardial damage. All of 

our patients had on-pump CABG with good pre-operative LV ejection fractions as was 

the case in this study, therefore our results are very similar. It is interesting that the less 

invasive approach led to a good early improvement in LV ejection fraction as was the 

case in our own PCI group who had a significant improvement at 24 hours compared to 

baseline. In this study by Selevanayagam et al troponin levels were also recorded as was 

the occurrence of new late gadolinium enhancement. Analysis of this data showed that 

the area-under-the-curve values for troponin were significantly higher in the on-pump 

CABG group. There was however no statistically significant difference in the amount of 

new late gadolinium enhancement post-CABG with 6.3 ± 3.6g in the on-pump group 

compared to 6.8 ± 4g in the off-pump group. Therefore despite an improvement in LV 

function in the off-pump group there was no reduction in the amount of late gadolinium 

enhancement and therefore no reduction in scar formation as a result of CABG. This is 
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despite a lower troponin release in this group.(142) Interestingly the same group from 

Oxford studied the effects of on and off-pump CABG on early and late right ventricular 

function. This study found an early reduction in RV function as measured by cardiac 

MRI in both groups which had recovered by 6 months.(143) RV function was not 

assessed as part of the present study. We also compared left ventricular end-systolic and 

end-diastolic volumes at 4 weeks post-CABG and PCI to see if there was any difference 

in remodelling however no statistically significant difference was found (Table 4.21). 

 

Those patients who were found to have significant coronary disease with no 

revascularisation options and were treated with medical therapy also had no significant 

change in their LVEF. However it must be noted that this group was exceptionally small 

with only 5 patients returning for the repeat MRI scan at 3 months. 

 

5.7 Post-PCI Troponin Levels 

Fifty-three (93%) patients had troponin measurements pre and post PCI. The majority of 

troponin levels were less than 6µg/L however one patient had a substantial post-PCI 

infarction due to side vessel occlusion resulting in a troponin level of 13.1µg/L. Other 

than this patient all the other patients were discharged on the day following PCI. The 

median troponin release post-PCI was 0.57µg/L and the mean was1.18µg/L. This is 

substantially less than that found in the Selevanayagam study of 50 PCI patients where 

the mean post-procedure troponin was 3.7 ± 3.0µg/L.(105) Their study measured the 

post-PCI troponin at 24 hours post PCI as was performed in the present study. In our 

study we had less 2 vessel angioplasty (23% vs 44%) however 2 of our patients did 

have 3 vessel PCI compared to zero in the Selevanayagam study. In addition, the mean 

stent length in our study was longer at 34.9 vs 24mm. We did not specifically look into 

how many lesions were bifurcations and perhaps this may be significant. Apart from the 
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increased percentage of 2 vessel PCI there is no obvious reason for this discrepancy in 

measured troponin values. In our study 42 (79%) patients had a positive troponin post 

PCI compared to 14 (37%) in the Selevanayagam study. The immunoassay in our 

hospital had a lower limit of detectable troponin down to 0.04µg/L compared to 0.2µg/L 

which helps explain some of this difference however on closer analysis of the data this 

would only account for 3 cases in our study where the troponin I was less than 0.2 and 

greater than 0.04. Taking these patients out of the equation, we still had double the 

number of troponin releases post-PCI however our troponin elevations were far smaller 

than those obtained in Oxford. Our mean lesion length was 16.95mm (Median 

15.22mm) compared to 15mm which may have contributed to the greater number of 

troponin releases and also our mean stent length was far higher (34.92 vs 24mm) which 

is also a significant difference. With longer lesions one may have expected our troponin 

elevations to be higher than that in the Selevanayagam study. Both laboratories used an 

immunoassay technique in estimating troponin levels however different analyzers were 

used. Our stented segment lengths greatly exceeded the lesion length with a median 

lesion length of 15.2mm and median stent length of 28mm. Reasons for this may 

included operator caution, plaque shift requiring further stenting and under estimating 

the lesion length using QCA. 

 

We looked at a variety of QCA and haemodynamic parameters to see if any of them 

correlated with troponin levels. Interestingly degree of stenosis, area of stenosis and 

minimal lumen diameter provided no significant correlation. Number of stents and stent 

diameter did not provide significant correlations with troponin levels. Lesion length had 

the best correlation with post-PCI troponin levels (r=0.6, p<0.0001) and unsurprisingly 

therefore stent length was also significant in this regard (r=0.37, p=0.02). Surprisingly 
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only stent length was significantly related to the likelihood of procedure related 

irreversible injury in the Selevanayagam study while lesion length was not.(105) 

 

5.8 Late Gadolinium Enhancement Post-PCI 

We obtained a good level of agreement between our two observers on the mass of late 

gadolinium enhancement. The mass of LGE was measured in order to verify the 

findings of the aforementioned study by Selevanayagam et al. In addition we also 

measured the occurrence of new late gadolinium enhancement following CABG. We 

chose to use a similar gradient echo sequence on the same make and model of scanner 

and also administered the same dose of gadolinium to our patients as was done 

previously.(105) It has been known for some time that minor elevations in troponin and 

CK following PCI are common.(90-92;105) The mechanisms of this have already been 

discussed in detail in the introduction however minor side branch occlusion and distal 

embolisation are thought to be the main causes. Selevanayagam et al found a strong 

correlation between troponin I measurements and the mean mass of new LGE on their 

24 hour and 7-8 month scans (r=0.84 and r=0.71 respectively). We failed to reproduce 

this at both 24 hours and 4 weeks post PCI. The r value at 24 hours was 0.25 with 

p=0.07 suggesting a non-significant trend with no apparent relationship at 4 weeks (r=-

0.19, p=0.2). Potential explantations for this could be that some PCI’s result in myocyte 

necrosis which is below the detection limits of LGE imaging. Alternatively there may 

be some troponin release following PCI which is due to reversible ischaemia rather than 

infarction. In this regard it is interesting to note that the troponin release we did see in 

our patients had no deleterious effects on ejection fraction which significantly increased 

following PCI. In the 4 week scans there may be a reduction in myocyte numbers due to 

necrosis leading to myocardial thinning. Finally our absolute troponin levels were much 

lower than that of the previous study and this may have obscured any relationship 
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between troponin and the extent of LGE. Selevanayagam et al did select a cohort of 

patients with particularly complex disease with over two thirds of lesions being graded 

B2 or higher by the AHA/ACC lesion criteria. In addition a higher percentage of their 

patients underwent two vessel PCI. We failed to find any correlation between the mass 

of LGE post-PCI and the number of vessels treated by PCI at either 24 hours or 4 weeks 

but the numbers of patients having 2 and 3 vessel angioplasty were small in comparison 

to the single vessel PCI group making it difficult to draw firm conclusions from this 

analysis. 

 

A closer analysis of the PCI group showed that 10 patients at 24 hours had new LGE 

with a mean increase in mass of LGE of 1.24g. There was no difference in troponin I 

levels between those patients with new LGE and those without and no correlation was 

found between lesion length / stent length and new LGE. Similar results were also 

found at 4 weeks post-PCI. In our study the mean increase in mass of LGE was far less 

than that found in the previous study by Selvanayagam et al (6g compared to 1.24g) as 

was our troponin I levels as has already been discussed which may account for the 

differences in findings. 

 

The mean difference in mass of LGE from pre-PCI to 4 weeks post PCI was -0.12g. 

This was thought to be due to myocardial thinning following previous infarction 

causing the appearance of less LGE. The standard deviation for this measurement was 

small at 0.8 and part of this result may be secondary measurement error. 

 

5.9 Late Gadolinium Enhancement Post-CABG 

Prior to CABG, 6 patients had evidence of LGE on their initial MRI scan however the 

mean mass of this was small at 1.47 ± 2.3g. Following CABG 10 patients had LGE with 
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a mean mass of 2.55 ± 3.5g with no significant reduction in ejection fraction. The 

median change in mass of LGE was only 0.11g following CABG. There was a trend 

towards developing more LGE post-CABG compared to post-PCI however the results 

did not reach statistical significance (p=0.07). This may be a reflection of the relatively 

small numbers of patients who required CABG in this study compared to those who had 

PCI performed. Steuer et al found late gadolinium enhancement in 18 (78%) of their 23 

patients post CABG however no pre CABG contrast enhanced MRI scan had been 

performed.(95) Their patients did however have normal pre CABG ECG’s and left 

ventricular function. It is difficult to be sure however that all of these patients requiring 

CABG did not have any undiagnosed areas of infarction. In our study 43% of subjects 

had LGE on their initial pre CABG MRI scan and 50% of patients in a larger study 

(n=60) comparing the occurrence of LGE pre and post on-pump and off-pump CABG 

had LGE pre-surgery.(142) All three of our studies show that new LGE develops 

following CABG. In the Selevanayagam study 40% of patients in total had evidence of 

new LGE post-CABG which is more in keeping with the results of our own smaller 

CABG subgroup where new LGE was confirmed in 43%. As shown on figure 4.90 two 

of our patients had quite significant increases in the mass of LGE with confirmed 

perioperative MIs. Unfortunately post-operative troponin measurements were not made 

as part of this study. Overall there is a trend towards the development of more LGE 

following CABG than PCI. 

 

5.10 Resolution of Perfusion Defects Post-Revascularisation 

One of the more interesting findings of the present study was that patients who achieved 

complete resolution of a pre-revascularisation perfusion defect had a significantly 

higher (but still <0.75) FFR value in the corresponding coronary artery pre-

revascularisation compared to those patients who only achieved partial resolution of 
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their pre-revascularisation perfusion defect (p=0.01). There was no significant 

difference in FFR value between those patients who had partial or complete resolution 

of a perfusion defect post-PCI suggesting that perhaps residual perfusion defects could 

be due to either microcirculatory obstruction due to plaque embolisation or occlusion of 

small side braches as has been suggested in the previous literature.(94;106;109) 

Unfortunately we had very few patients with persistence of their perfusion defect post-

revascularisation to gain any significant insight into this phenomenon. However, 

ultimately from a patient’s perspective this was a good outcome. 

 

5.11 Serum Caffeine Measurements and the Effects on Haemodynamics and 

Symptoms 

Caffeine measurement in the setting of MRMPI imaging has not previously been 

reported. As documented in the introduction the majority of our knowledge in this area 

stems from nuclear perfusion imaging research. Some recent work has contradicted the 

belief that caffeine may affect the results of tests looking for reversible myocardial 

ischaemia.(79;80) There is good evidence from the nuclear perfusion work that a period 

of abstention from caffeine prior to stress testing with adenosine / dipyridamole is wise. 

Some research has suggested that 12 hours was too short a period and perhaps 24 hours 

would be more appropriate.(81;82;84) In our study we asked patients to abstain from all 

methylxanthines for 24 hours prior to MRMPI on the basis of this preceding work. This 

was reinforced by a telephone call on the day prior to scanning to remind patients of this 

rule. This was in an attempt to reduce the number of false negative scans in our study to 

determine the true accuracy of MRMPI for the diagnosis of reversible myocardial 

ischaemia. Of the 220 scans performed in 101 patients in our study, 29 (13.2%) had 

detectable caffeine levels >1mg/L. This is a higher proportion than that found by Zheng 

et al in which their 36 patients all had levels less than 0.8mg/L.(84) This study 
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contained only a fraction of the number of analyses that was performed in our research. 

Jacobson et al found detectable caffeine levels in the range of 0.1 to 5.0mg/L in 40% of 

their 86 patients undergoing thallium-201 myocardial perfusion scintigraphy.(81) Their 

immunoassay technique was more sensitive than the one used in our study accounting 

for the higher number of detectable levels. Our median level was 1.33mg/L however 

one patient’s level was exceptionally high at 6.49mg/L despite claiming to have adhered 

to the period of abstinence. In those patients with detectable caffeine levels the 

maximum stress heart rate achieved during the adenosine infusion was significantly 

lower than those with undetectable levels (p=0.02) There was also a trend to a higher 

resting systolic BP in the caffeine detectable group (p=0.09). There was however no 

significant difference in the change in heart rate, systolic BP and diastolic BP between 

those patients with and without detectable caffeine. This is similar to the findings of 

Jacobson et al who also chose a 1.0mg/L cut-off for their analysis.(81) Majd-Ardekani 

et al in 2000 also failed to find significant differences in haemodynamic parameters 

after 12 hours of abstention. This study chose to use a higher cut-off of 2.9mg/L to 

compare their haemodynamic measurements.(82) We also looked at the occurrence of 

symptoms during the adenosine stress as a marker of hyperaemia. A higher proportion 

of patients in the caffeine detected group experienced absolutely no symptoms with the 

adenosine infusion however this did not reach statistical significance (14% vs 6%, 

p=0.09). Examining individual symptoms revealed significantly less flushing in the 

caffeine detected group (p=0.03) and a non-significant trend to less chest pain and 

headache. A significant difference in the occurrence of symptoms was found in the 

Majd-Ardekani study where only 12 hours of abstention was adhered to and higher 

caffeine levels were recorded. Interestingly the 5 patients who were labelled as non-

responders to the intravenous adenosine infusion as on the basis of symptoms 

experienced and haemodynamic response all had serum caffeine levels less than 1mg/L. 
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This interesting finding raises the possibility of these patients having not been given 

enough adenosine to induce maximal hyperaemia or having high levels of another 

methylxanthine which was not measured in this study. This section of the study 

complements the nuclear perfusion literature that already exists in that a 24 hour 

abstention from caffeine is necessary as a minimum in order to achieve low caffeine 

levels in a high proportion of patients (<1mg/L). The significantly lower stress heart 

rate in those caffeine detected patients and the trend towards less symptoms is 

suggestive of less complete maximal hyperaemia and therefore perhaps we should 

consider a slightly longer period of caffeine abstention. However our non-responders all 

had levels less than 1mg/L and therefore other compounds may be responsible. Perhaps 

further research should be conducted measuring levels of theobromine and theophyline 

which are also commonly found in our diets as well. 
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6 Conclusion 

In conclusion, this is one of the largest studies performed to assess the clinical utility of 

MRMPI in the diagnosis of significant coronary artery disease and is certainly the 

largest study which has chosen FFR as a physiological gold standard. Our data suggest 

that previous studies have underestimated the diagnostic accuracy of MRMPI where a 

non-invasive gold standard, mainly QCA, has been used. MRMPI using gadolinium is a 

very accurate technique for the non-invasive diagnosis of significant coronary artery 

disease. 

 

The interobserver variability is good between observers for both qualitative and semi-

quantitative analysis of MPRI. 

 

False positive MRMPI scans are not due to microvascular disease as assessed by the 

invasive measurements of CFR and the index of microcirculatory resistance (IMR). In 

our study a substantial proportion of our false positive may in fact have been true 

positives with FFR values in the grey zone. 

 

Qualitative analysis of MRMPI is unable to detect isolated microcirculatory disease as 

defined by an FFR>0.8 and a CFR<2.0. 

 

A small troponin release is common post PCI and is related to the length of the lesion 

being treated and the length of stent deployed to treat the lesion. Small troponin values 
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do not accurately correlate with the occurrence of new late gadolinium enhancement as 

has been shown in previous studies of more complex coronary disease and larger 

troponin values. The troponin elevations in the present study had no adverse effects on 

left ventricular function. In fact there was a significant increase in ejection fraction at 24 

hours. 

 

CABG did result in a trend towards more new late gadolinium enhancement and no 

significant improvement in left ventricular function was noted when comparing pre and 

post operative MRI scans. Post-operative complications were common in the CABG 

group of patients. 

 

Abstaining from caffeine for 24 hours pre-adenosine stress MRI resulted in the majority 

of patients having undetectable caffeine levels. However some of the symptoms 

associated with adenosine are less in those with detectable caffeine and less tachycardia 

is experienced, suggesting that perhaps a longer period of abstention should be 

considered. Interestingly our 5 patients who failed to develop the usual symptoms and 

haemodynamics during the adenosine infusion (non-responders) all had undetectable 

caffeine levels making the relationship between adenosine stress physiology and 

caffeine levels a complex one. This raises the possibility that other methylxanthines 

play a role in this process.  

 

Further research is required in the development of faster MRMPI pulse sequences with 

better spatial resolution. In order to expand the availability of use of MRMPI the 

development of larger bore and open topped scanners will minimise claustrophobia 
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which remains a limitation. New stress agents are being developed and need tested in 

MRMPI imaging. Follow-up data on patients with new late gadolinium enhancement 

post-PCI needs to be obtained to ensure that this is not relevant in causing future 

arrhythmias. Measurements of the other methylxanthines in studies using adenosine 

stress would be useful in trying to determine the cause of adenosine non-responders in 

patients with undetectable caffeine. Good semi quantitative analysis remains time 

consuming and further development of reliable software would be welcomed by the 

cardiac MR community. This would lead to more patients having this method of 

assessment performed as opposed to a purely qualitative assessment. Work is currently 

ongoing in many of these areas which will expand the appeal and use of MRMPI. This 

technique may eventually replace nuclear perfusion imaging for the diagnosis of 

myocardial ischaemia. 
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8 Appendices 

8.1 Appendix 1 - Coronary Angiography and Perfusion MRI Caffeine Instructions 

During your coronary angiogram and MRI scan we will be administering a medicine 

called adenosine which increases the blood flow to your heart. Adenosine is a naturally 

occurring substance and is already present in different forms in our bodies. Caffeine, 

which is present in a number of foods and beverages, can block the effects of adenosine 

and potentially lead to false results. We would therefore be grateful if you could abstain 

from caffeine containing foods and beverages for 24 hours before you attend for your 

tests. Things to avoid include:- 

 

Coffee including decaffeinated 

Tea including decaffeinated 

Soft Drinks especially carbonated soda’s eg. Coca-cola, Irn-Bru etc 

High Energy Drinks containing guarana 

Chocolate 

Cocoa containing foods eg. Cake 

Kola nuts 

Over the counter drugs eg. Anadin, anadin extra 

Cold and Flu Remedies 

 

 

In you are unsure about the caffeine content of items please read the ingredients on the 

back of the packaging. 
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8.2 Appendix 2 – Technical Parameters of MRI Pulse Sequences 

 

1. Sagital, Coronal and Transaxial Localising Images 

[TrueFISP; TE 1.7; TR 3.4; Flip Angle 60o; Slice Thickness 6mm;  

FOV 276x340; Matrix 83x128] 

2. Transaxial HASTE Sequence – No Breath-hold 

[TE 26; TR 700; Flip Angle 160o; Slice Thickness 6mm; Slices 20; FOV 

340x340; Matrix 151x256] 

3. 2 Chamber Scout View 

[TrueFISP; TE 1.7; TR 3.4; Flip Angle 60o; Slice Thickness 6mm;  

FOV 276x340; Matrix 83x128; Slices 3] 

4. 4 Chamber Scout View 

[TrueFISP; TE 1.7; TR 3.4; Flip Angle 60o; Slice Thickness 6mm;  

FOV 276x340; Matrix 83x128; Slices 3] 

5. Short Axis Scout Views 

[TrueFISP; TE 1.7; TR 3.4; Flip Angle 60o; Slice Thickness 6mm;  

FOV 276x340; Matrix 83x128; Slices 3] 

6. Vertical Long Axis Cine for 2 Chamber View 

[TrueFISP; TE 1.57; TR 47.1(15 Segments); Flip Angle 60o; Slice  

Thickness 8mm; FOV 276x340; Matrix 135x256; Distance Factor 20%; Phases 

35] 

7. Horizontal Long Axis Cine for 4 Chamber View 

[TrueFISP; TE 1.57; TR 47.1(15 Segments); Flip Angle 60o; Slice  

Thickness 8mm; FOV 276x340; Matrix 135x256; Distance Factor 20%; Phases 

35] 
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8. Left Ventricular Outflow Tract Cine 

[TrueFISP; TE 1.57; TR 47.1(15 Segments); Flip Angle 60o; Slice  

Thickness 8mm; FOV 276x340; Matrix 135x256; Distance Factor 20%; Phases 

35] 

9. Short Axis Cine Stack of LV Cavity from Base to Apex  

[TrueFISP; TE 1.57; TR 47.1(15 Segments); Flip Angle 60o; Slice  

Thickness 8mm; FOV 276x340; Matrix 135x256; Distance Factor 20%; Phases 

35] 

10. 1st Pass Stress Perfusion Imaging 

[TurboFLASH; TE 0.99; TR 173; TI 90; Flip Angle 8o; Slice  

Thickness 8mm; Slices 3; FOV 213x340; Matrix 80x128; Spatial Resolution 

2.7x2.7mm2; Bandwidth 780Hz/pixel] 

11. Early Gadolinium Enhancement for Microvascular Obstruction 

[Segmented TrueFISP; TE 15; TR 700; TI 440; Flip Angle 60o; Slice  

Thickness 8mm; Slices 9; Distance Factor 25%; FOV 255x340; Matrix 96x256] 

12. Late Gadolinium for Delayed Enhancement Images 

[TurboFLASH; TE 43; TR 1000; TI 320 (initially); Flip Angle 20o; Slice  

Thickness 8mm; Slices 1; FOV 276x340; Matrix 125x256] 

13. 1st Pass Resting Perfusion Imaging  

[TurboFLASH; TE 0.99; TR 173; TI 90; Flip Angle 8o; Slice  

Thickness 8mm; Slices 3; FOV 213x340; Matrix 80x128; Spatial Resolution 

2.7x2.7mm2; Bandwidth 780Hz/pixel] 
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8.3 Appendix 3 – Adenosine Iinfusion Rate for MRMPI Scanning 

 

120ML BAG OF ADENOSINE IN 0.9% SALINE (1MG/ML) INFUSION 

DURATION – 4 MINS 

 

Weight (Kg) Infusion Rate (ml/min) 

40 5.6 

50 7 

60 8.4 

70 9.8 

80 11.2 

90 12.6 

100 14 

110 15.4 

120 16.8 

130 18.2 


